【題目】如圖,長為60cm,寬為x(cm)的大長方形被分割為7小塊,除陰影 A, B外,其余5塊是形狀、大小完全相同的小長方形,其較短一邊長為 y (cm).
(1)填空:從圖可知,每個小長方形較長的一邊長是_________cm (用含y的代數式表示).
(2)分別求出陰影 A,B的面積,并計算陰影 A,B的面積差?(用含x,y的式子表示)
(3)當y=10時,陰影 A與陰影 B的面積差會隨著x的變化而變化嗎?請你作出判斷,并說明理由.
【答案】(1)60-3y;(2)SA=60x-120y-3xy+6y2,SB=3xy+9y2-180y,SA﹣SB=60x+60y-6xy-3y2(3)不變化,為定值300
【解析】
(1)從圖可知,每個小長方形較長的一邊長是(60-3y)cm;
(2)陰影部分A的面積是(60-3y)(x-2y)cm2,陰影部分B的面積是3y[x-(60-3y)]cm2,所以陰影A,B的面積差是:(60-3y)(x-2y)-3y[x-(60-3y)]
(3)把(2)中陰影A,B的面積的式子相減得300 cm2,判斷出不隨x的變化而變化.
(1)從圖可知,每個小長方形較長的一邊長是(60-3y)cm;
(2)SA=(x-2y)(60-3y)=60x-120y-3xy+6y2
SB=3y [x-(60-3y)]= 3y (x+3y-60) =3xy+9y2-180y
SA﹣SB=60x-120y-3xy+6y2﹣(3xy+9y2-180y)=60x+60y-6xy-3y2
(3)當y=10時,陰影 A與陰影 B的面積SA-SB=60x+600-60x-300= 300,是定值,不會隨著x的變化而變化.
科目:初中數學 來源: 題型:
【題目】如圖,在中,
平分
交
于點
,延長
至點
平分
,且
的延長線交于點
,若
.
求證:
;
求
的度數;
若在圖中繼續作
與
的平分線交于點
,作
與
的平分線交于點
,作
與
的平分線交于點
,以此類推,作
與
的平分線交于點
,請用含有
的式了表示
的度數(直接寫答案).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在學習二次根式后,發現一些含根號的式子可以寫成另一個式子的平方,如:3+2,善于思考的小明進行了以下探索:
設a+b(其中a、b、m、n均為整數),
則有:a+b,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把類似a+b
的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當a、b、m、n均為正整數時,若a+b,用含m、n的式子分別表示a、b得:a= ,b= ;
(2)利用所探索的結論,用完全平方式表示出:7+4= .
(3)請化簡:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標有數字1,3,5;第二組卡片正面分別標有數字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當摸出的兩張卡片的正面數字之積小于10,則小明獲勝;當摸出的兩張卡片的正面數字之積超過10,則小亮獲勝.你認為這個游戲規則對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點F,∠ACE=45°.
(1)求證:BE=EF;
(2)如圖2,G在BC的延長線上,連接GA,若GA=GB,求證:AC平分∠DAG;
(3)如圖3,在(2)的條件下,H為AG的中點,連接DH交AC于M,連接EM、ED,若S△EMC=4,∠BAD=15°,求AM的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A(0,1),B(1,2),點P在x軸上運動,當點P到A、B兩點距離之差的絕對值最大時,點P的坐標是_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+mx+n與直線y=﹣
x+3交于A,B兩點,交x軸與D,C兩點,連接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求拋物線的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)條件下,P為y軸右側拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ACB相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com