【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績如下表(單位:環):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空① ;② ;
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績方差為,你認為推薦誰參加比賽更合適,請說明理由.
【答案】(1)9,9;(2);(3)推薦甲參加比賽合適.
【解析】
試題分析:(1)根據中位數的定義先把這組數據從小到大排列,再找出最中間兩個數的平均數即可求出①;根據平均數的計算公式即可求出②;
(2)根據方差的計算公式S2=[(x1﹣
)2+(x2﹣
)2+…+(xn﹣
)2]代值計算即可;
(3)根據方差的意義:反映了一組數據的波動大小,方差越大,波動性越大,反之也成立,即可得出答案.
解:(1)甲的中位數是:=9;
乙的平均數是:(10+7+10+10+9+8)÷6=9;
故答案為:9,9;
(2)S甲2=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=
;
(3)∵=
,S甲2<S乙2,
∴推薦甲參加比賽合適.
科目:初中數學 來源: 題型:
【題目】對于0,1以及真分數p,q,r,若p<q<r,我們稱q為p和r的中間分數.為了幫助我們找中間分數,制作了下表:
兩個不等的正分數有無數多個中間分數.例如:上表中第③行中的3個分數、
、
,有
,所以
為
和
的一個中間分數,在表中還可以找到
和
的中間分數
,
,
,
.把這個表一直寫下去,可以找到
和
更多的中間分數.
(1)按上表的排列規律,完成下面的填空:
①上表中括號內應填的數為 ;
②如果把上面的表一直寫下去,那么表中第一個出現的和
的中間分數是 ;
(2)寫出分數和
(a、b、c、d均為正整數,
,
)的一個中間分數(用含a、b、c、d的式子表示),并證明;
(3)若與
(m、n、s、 t均為正整數)都是
和
的中間分數,則
的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,(1)已知∠ABC,射線ED∥AB,過點E作∠DEF=∠ABC,試說明BC∥EF;
(2)如圖②,已知∠ABC,射線ED∥AB,∠ABC+∠DEF=180°.判斷直線BC與直線EF的位置關系,并說明理由;
(3)根據以上探究,你發現了一個什么結論?請你寫出來;
(4)如圖③,已知AC⊥BC,CD⊥AB,DE⊥AC,HF⊥AB,若∠1=48°,試求∠2的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究證明:
(1)如圖1,在△ABC中,AB=AC,點E是BC上的一個動點,EG⊥AB,EF⊥AC,CD⊥AB,點G,F,D分別是垂足.求證:CD=EG+EF;
猜想探究:
(2)如圖2,在△ABC中,AB=AC,點E是BC的延長線上的一個動點,EG⊥AB于G,EF⊥AC交AC延長線于F,CD⊥AB于D,直接猜想CD、EG、EF之間的關系為 CD=EG﹣EF ;
問題解決:
(3)如圖3,邊長為10的正方形ABCD的對角線相交于點O、H在BD上,且BH=BC,連接CH,點E是CH上一點,EF⊥BD于點F,EG⊥BC于點G,則EF+EG= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下表所示為裝運、銷售甲、乙、丙三種蔬菜的重量及利潤。某公司計劃用20輛汽車裝運甲、乙、丙三種蔬菜共36噸到某地銷售.規定每輛汽車滿載,每車只裝一種蔬菜,每種蔬菜不少于一車。應如何安排,可使公司獲得利潤18300元?
甲 | 乙 | 丙 | |
每輛汽車裝運的噸數 | 2 | 1 | 1.5 |
每噸蔬菜可獲利潤(百元) | 5 | 7 | 4 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(-4,n),B(2,-4)是一次函數y=kx+b的圖象和反比例函數y=的圖象的兩個交點.
(1)求反比例函數和一次函數的表達式;
(2)求△AOB的面積;
(3)若D(x,0)是x軸上原點左側的一點,且滿足kx+b-<0,求x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家規定個人發表文章、出版圖書獲得稿費的納稅計算方法是:(l)稿費不高于800元的不納稅;(2)稿費高于800元又不高于4000元的,減除其中的800元,其余部分按20%納稅:(3)稿費高于4000元,減除稿酬的20%,其余部分按20%納稅.今知丁老師獲得一筆稿費,并繳納個人所得稅600元,問:丁老師的這筆稿費有多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】嘉淇同學用配方法推導一元二次方程ax2+bx+c=0(a≠0)的求根公式時,對于b2﹣4ac>0的情況,她是這樣做的:
由于a≠0,方程ax2+bx+c=0變形為:
x2+x=﹣
,…第一步
x2+x+(
)2=﹣
+(
)2,…第二步
(x+)2=
,…第三步
x+=
(b2﹣4ac>0),…第四步
x=,…第五步
嘉淇的解法從第 步開始出現錯誤;事實上,當b2﹣4ac>0時,方程ax2+bx+c=0(a≠O)的求根公式是 .
用配方法解方程:x2﹣2x﹣24=0.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com