【題目】已知直線y=2x-5與x軸和y軸分別交于點A和點B,拋物線y=-x2+bx+c的頂點M在直線AB上,且拋物線與直線AB的另一個交點為N.
(1)如圖,當點M與點A重合時,求拋物線的解析式;
(2)在(1)的條件下,求點N的坐標和線段MN的長;
(3)拋物線y=-x2+bx+c在直線AB上平移,是否存在點M,使得△OMN與△AOB相似?若存在,直接寫出點M的坐標;若不存在,請說明理由.
【答案】(1)拋物線的解析式;
(2)點N的坐標為,線段MN的長為
;
(3)存在點M(2,-1),或(4,3)
【解析】試題分析:(1)①首先求得直線與x軸,y軸的交點坐標,利用二次函數的對稱軸的公式即可求解;
②N在直線上同時在二次函數上,因而設N的橫坐標是a,則在兩個函數上對應的點的縱坐標相同,據此即可求得a的值,即N的坐標,過N作NC⊥x軸,垂足為C,利用勾股定理即可求得MN的長;
(2)△AOB的三邊長可以求得OB=2OA,AB邊上的高可以求得是,拋物線y=-x2+bx+c在直線AB上平移,則MN的長度不變,根據(1)的結果是2
,MN是AB邊上的高的二倍,當OM⊥AB或ON⊥AB時,兩個三角形相似,據此即可求得M的坐標.
試題解析:(1)①∵直線y=2x-5與x軸和y軸交于點A和點B,
∴A(,0),B(0,-5).
當頂點M與點A重合時,
∴M(,0).
∴拋物線的解析式是:y=(x)2.即y=x2+5x
.
②∵N在直線y=2x-5上,設N(a,2a-5),又N在拋物線y=x2+5x上,
∴2a5=a2+5a.
解得a1=,a2=
(舍去)
∴N(,4).
過N作NC⊥x軸,垂足為C.
∵N(,4),
∴C(,0).
∴NC=4.MC=OMOC==2.
∴MN=;
(2)設M(m,2m-5),N(n,2n-5).
∵A(,0),B(0,-5),
∴OA=,OB=5,則OB=2OA,AB=
,
當∠MON=90°時,∵AB≠MN,且MN和AB邊上的高相等,因此△OMN與△AOB不能全等,
∴△OMN與△AOB不相似,不滿足題意.
當∠OMN=90°時, ,即
,解得OM=
,
則m2+(2m-5)2=()2,解得m=2,
∴M(2,-1);
當∠ONM=90°時, ,即
,解得ON=
,
則n2+(2n-5)2=()2,解得n=2,
∵OM2=ON2+MN2,
即m2+(2m-5)2=5+(2)2,
解得:m=4,
則M的坐標是M(4,3).
故M的坐標是:(2,-1)或(4,3).
科目:初中數學 來源: 題型:
【題目】如圖,小島A在港口P的南偏西45°方向,距離港口81海里處.甲船從A出發,沿AP方向以9海里/時的速度駛向港口,乙船從港口P出發,沿南偏東60°方向,以18海里/時的速度駛離港口,現兩船同時出發.
(1)出發后幾小時兩船與港口P的距離相等;
(2)出發后幾小時乙船在甲船的正東方向?(結果精確到0.1小時)(參考數據:≈1.41,
≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年6月29日,新建的無錫文化旅游城將盛大開業,開業后預計接待游客量約20 000 000 人次,這個年接待課量可以用科學記數法表示為________人次.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點點同學對數據26,36,36,46,5■,52進行統計分析,發現其中一個兩位數被墨水涂污看不到了,則計算結果與被涂污數字無關的是( )
A. 平均數B. 中位數C. 方差D. 標準差
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com