【題目】如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°.設BE=a,DC=b,那么AB=_____(用含a、b的式子表示AB).
科目:初中數學 來源: 題型:
【題目】某旅行團計劃今年暑假組織一個老年人團去昆明旅游,預定賓館住宿時,有住宿條件一樣的甲、乙兩家賓館供選擇,其收費標準為每人每天120元,并且各自推出不同的優惠方案.甲家是35人(含35人)以內的按標準收費,超過35人的,超出部分按九折收費;乙家是45人(含45人)以內的按標準收費,超過45人的,超出部分按八折收費.設老年團的人數為.
(1)根據題意,用含有的式子填寫下表:
甲賓館收費/元 | 5280 | |||
乙賓館收費/元 | 5400 |
(2)當老年人團的人數為何值時,在甲、乙兩家賓館的花費相同?如果老年人團的人數超過60人,在哪家賓館住宿比較省錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,以A為圓心,AD為半徑的弧交AB的延長線于點E,連接BD,若AD=2AB=4,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙二人都是戶外運動愛好者,在一次登山活動中,甲、乙二人距出發點的高度 (單位:米),
(單位:米)與乙登山時間 x (單位:分鐘)之間的函數圖象如圖所示,根據圖象所提供的信息解答下列問題:
(1)甲登山的速度是每分鐘 米,乙在 2 分鐘時提速,提速時距地面的高度 為______米;
(2)若乙提速后,乙的速度是甲登山速度的 3 倍,請分別求出甲、乙二人登山全過程中,登山時距地面的高度 ,
與乙登山時間
之間的函數關系式;
(3)在(2)的條件下,乙登山多長時間追上了甲? 此時乙距提速時的高度為多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的邊AB是⊙O的直徑,點C在⊙O上,已知AC=6cm,BC=8cm,點P、Q分別在邊AB、BC上,且點P不與點A、B重合,BQ=kAP(k>0),聯接PC、PQ.
(1)求⊙O的半徑長;
(2)當k=2時,設AP=x,△CPQ的面積為y,求y關于x的函數關系式,并寫出定義域;
(3)如果△CPQ與△ABC相似,且∠ACB=∠CPQ,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt⊿ABC中,∠ACB是直角, tan∠B=,BC=16 cm,點D以2cm/s的速度由點A向點B勻速運動,到達點B即停止,M、N分別是AD、CD的中點,連結MN,設點D的運動時間為t
(1)求MN的長;
(2)求點D由點A到點B勻速運動過程中,線段MN所掃過的面積;
(3)若⊿DMN是等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知拋物線與
軸相交于
、
兩點(
點在
點的左側),與
軸相交于
點,且
.
(1)求這條拋物線的解析式;
(2)如圖2,點在
軸上,且在
點的右側,
點為拋物線上第二象限內的點,連接
交拋物線于第二象限內的另外一點
,點
到
軸的距離與點
到
軸的距離之比為
,已知
,求點
的坐標;
(3)如圖3,在(2)的條件下,點由
出發,沿
軸負方向運動,連接
,點
在線段
上,連接
,
,過點
作
,與拋物線相交于點
,若
,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若一條直線把一個平面圖形分成面積相等的兩部分,那么這條直線叫做該平面圖形的“和諧線”,其“和諧線”被該平面圖形截得的線段叫做該平面圖形的“和諧線段”(例如圓的直徑就是圓的“和諧線段”)
問題探究:
(1)如圖①,已知△ABC中,AB=6,BC=8,∠B=90°,請寫出△ABC的兩條“和諧線段”的長.
(2)如圖②,平行四邊形ABCD中,AB=6,BC=8,∠B=60°,請直接寫出該平行四邊形ABCD的“和諧線段”長的最大值和最小值;
問題解決
(3)如圖③,四邊形ABCD是某市規劃中的商業區示意圖,其中AB=2,CD=10,∠A=135°,∠B=90°,tanC=,現計劃在商業區內修一條筆直的單行道MN(小道的寬度不計),入口M在BC上,出口N在CD上,使得MN為四邊形ABCD“和諧線段”,在道路一側△MNC區域規劃為公園,為了美觀要求△MNC是以CM為腰的等腰三角形,請通過計算說明設計師的想法能否實現?若可以,請確定點M的位置(即求CM的長).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com