【題目】閱讀材料,回答下列問題:
數軸是學習有理數的一種重要工具,任何有理數都可以用數軸上的點表示,這樣能夠運用數形結合的方法解決一些問題。例如,兩個有理數在數軸上對應的點之間的距離可以用這兩個數的差的絕對值表示;
在數軸上,有理數3與1對應的兩點之間的距離為|31|=2;
在數軸上,有理數5與2對應的兩點之間的距離為|5(2)|=7;
在數軸上,有理數2與3對應的兩點之間的距離為|23|=5;
在數軸上,有理數8與5對應的兩點之間的距離為|8(5)|=3;……
如圖1,在數軸上有理數a對應的點為點A,有理數b對應的點為點B,A,B兩點之間的距離表示為|ab|或|ba|,記為|AB|=|ab|=|ba|.
(1)數軸上有理數10與5對應的兩點之間的距離等于___;數軸上有理數x與5對應的兩點之間的距離用含x的式子表示為___;若數軸上有理數x與1對應的兩點A,B之間的距離|AB|=2,則x等于___;
(2)如圖2,點M,N,P是數軸上的三點,點M表示的數為4,點N表示的數為2,動點P表示的數為x.
①若點P在點M,N之間,則|x+2|+|x4|=___;若|x+2|+|x4|═10,則x=___;
②根據閱讀材料及上述各題的解答方法,|x+2|+|x|+|x2|+|x4|的最小值等于___.
【答案】(1)5;|x+5|;1或3;(2)①6;6或4;②8.
【解析】
(1)根據絕對值的定義:數軸上有理數-10與-5對應的兩點之間的距離等于5;數軸上有理數x與-5對應的兩點之間的距離用含x的式子表示為|x+5|;若數軸上有理數x與-1對應的兩點A,B之間的距離|AB|=2,則x等于1或-3;
(2)①若點P在點M,N之間,則|x+2|+|x-4|=6;若|x+2|+|x-4|═10,則x=6或-4;
②|x+2|+|x|+|x-2|+|x-4|的最小值,這個最小值=4-(-2)=6.
(1)根據絕對值的定義:
數軸上有理數10與5對應的兩點之間的距離等于5;
數軸上有理數x與5對應的兩點之間的距離用含x的式子表示為|x+5|;
A,B之間的距離|AB|=2,則x等于1或3,
(2)①若點P在點M,N之間,則|x+2|+|x4|=6;
若|x+2|+|x4|═10,則x=6或4;
②|x+2|+|x|+|x2|+|x4|的最小值,
即x與4,2,0,4之間距離和最小,這個最小值=4(4)=8.
故答案為:5,|x+5|,1或3;6,6或4,8.
科目:初中數學 來源: 題型:
【題目】已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,連接BD(如圖a),點P沿梯形的邊,從點A→B→C→D→A移動,設點P移動的距離為x,BP=y.
(1)求證:∠A=2∠CBD;
(2)當點P從點A移動到點C時,y與x的函數關系如圖(b)中的折線MNQ所示,試求CD的長.
(3)在(2)的情況下,點P從A→B→C→D→A移動的過程中,△BDP是否可能為等腰三角形?若能,請求出所有能使△BDP為等腰三角形的x的取值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了解本校八年級學生生物考試測試情況,隨機抽取了本校八年級部分學生的生物測試成績為樣本,按A(優秀)、B(良好)、C(合格)、D(不合格)四個等級進行統計,并將統計結果繪制成如下統計圖表.請你結合圖表中所給信息解答下列問題:
等級 | 人數 |
A(優秀) | 40 |
B(良好) | 80 |
C(合格) | 70 |
D(不合格) |
(1)請將上面表格中缺少的數據補充完整;
(2)扇形統計圖中“A”部分所對應的圓心角的度數是 ;
(3)該校八年級共有1200名學生參加了身體素質測試,試估計測試成績合格以上(含合格)的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場購進一批 30 瓦的 LED 燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:
LED 燈泡 | 普通白熾燈泡 | |
進價(元) | 45 | 25 |
標價(元) | 60 | 30 |
(1)該商場購進了 LED 燈泡與普通白熾燈泡共 300 個,LED 燈泡按標價進行銷售,而普通 白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利 3 200 元,求該商場購進 LED 燈泡與 普通白熾燈泡的數量分別為多少個?
(2)由于春節期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡 120 個, 在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的 30%, 并求出此時這批燈泡的總利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在數軸上點表示數
,
點表示數
,
表示
點和
點之間的距離,且
,
滿足
.
(1)求,
兩點之間的距離;
(2)若在數軸上存在一點,且
,直接寫出
點表示的數;
(3)若在原點處放一擋板,一小球甲從點
處以1個單位/秒的速度向左運動;同時另一小球乙從點
處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設運動的時間為t(秒),
①分別表示甲、乙兩小球到原點的距離(用t表示);
②求甲、乙兩小球到原點的距離相等時經歷的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某綜合實踐小組的同學對本校八年級學生課外閱讀最喜愛的圖書種類進行了調查.
(1)該綜合實踐小組設計了下列的調查方式,比較合理的是 (填寫序號即可)
A.對八年級各班的數學課代表進行問卷調查
B.對八年級(1)班的全班同學進行問卷調查
C.對八年級各班學號為的倍數的同學進行問卷調查
(2)小組同學根據問卷調查(每個被調查的學生只能選擇其中一項)的結果繪制了如下兩幅統計圖(不完整):
根據以上信息,回答下列問題:
①這次被調查的學生共有 人;
②請將圖1補充完整并在圖上標出數據;
③圖2中, ,“科普類”部分扇形的圓心角是
;
④若該校八年級共有學生人,根據調查結果估計此年級最喜歡“文學類”圖書的學生約有 人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F分別在邊AB,BC上,∠ADE=∠CDF.
(1)求證:AE=CF;
(2)連接DB交EF于點O,延長OB至G,使OG=OD,連接EG,FG,判斷四邊形DEGF是否是菱形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知點C在線段AB上,線段AC=10厘米,BC=6厘米,點M,N分別是AC,BC的中點.
(1)求線段MN的長度;
(2)根據第(1)題的計算過程和結果,設AC+BC=a,其他條件不變,求MN的長度;
(3)動點P、Q分別從A、B同時出發,點P以2cm/s的速度沿AB向右運動,終點為B,點Q以1cm/s的速度沿AB向左運動,終點為A,當一個點到達終點,另一個點也隨之停止運動,求運動多少秒時,C、P、Q三點有一點恰好是以另兩點為端點的線段的中點?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com