【題目】如圖是一根可伸縮的魚竿,魚竿是用10節大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節套管的長度(如圖1所示):使用時,可將魚竿的每一節套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態下的平面示意圖.已知第1節套管長50cm,第2節套管長46cm,以此類推,每一節套管均比前一節套管少4cm.完全拉伸時,為了使相鄰兩節套管連接并固定,每相鄰兩節套管間均有相同長度的重疊,設其長度為xcm.
(1)請直接寫出第5節套管的長度;
(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.
【答案】
(1)
解:第5節套管的長度為:50﹣4×(5﹣1)=34(cm).
(2)
解:第10節套管的長度為:50﹣4×(10﹣1)=14(cm),
設每相鄰兩節套管間重疊的長度為xcm,
根據題意得:(50+46+42+…+14)﹣9x=311,
即:320﹣9x=311,
解得:x=1.
答:每相鄰兩節套管間重疊的長度為1cm.
【解析】本題考查了一元一次方程的應用,解題的關鍵是:(1)根據數量關系直接求值;(2)根據數量關系找出關于x的一元一次方程.本題屬于基礎題,難度不大,解決該題型題目時,根據數量關系找出不等式(方程或方程組)是關鍵.(1)根據“第n節套管的長度=第1節套管的長度﹣4×(n﹣1)”,代入數據即可得出結論;(2)同(1)的方法求出第10節套管重疊的長度,設每相鄰兩節套管間的長度為xcm,根據“魚竿長度=每節套管長度相加﹣(10﹣1)×相鄰兩節套管間的長度”,得出關于x的一元一次方程,解方程即可得出結論.
科目:初中數學 來源: 題型:
【題目】在下列敘述中:
①一組對邊相等的四邊形是平行四邊形;
②函數y= 中,y隨x的增大而減;
③有一組鄰邊相等的平行四邊形是菱形;
④有不可能事件A發生的概率為0.0001.
正確的敘述有( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB的解析式為y=2x+4,交x軸于點A,交y軸于點B,以A為頂點的拋物線交直線AB于點D,交y軸負半軸于點C(0,﹣4).
(1)求拋物線的解析式;
(2)將拋物線頂點沿著直線AB平移,此時頂點記為E,與y軸的交點記為F,
①求當△BEF與△BAO相似時,E點坐標;
②記平移后拋物線與AB另一個交點為G,則S△EFG與S△ACD是否存在8倍的關系?若有請直接寫出F點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】早晨,小張去公園晨練,下圖是他離家的距離y(千米)與時間t(分鐘)的函數圖象,根據圖象信息,下列說法正確的是( )
A.小張去時所用的時間多于回家所用的時間
B.小張在公園鍛煉了20分鐘
C.小張去時的速度大于回家的速度
D.小張去時走上坡路,回家時走下坡路
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點,且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S= (其中a,b,c是三角形的三邊長,p=
,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5
∴p= =6
∴S= =
=6
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數學家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內切圓半徑r.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學活動課上,小敏、小穎分別畫了△ABC和△DEF , 尺寸如圖.如果兩個三角形的面積分別記作S△ABC、S△DEF , 那么它們的大小關系是( )
A.S△ABC>S△DEF
B.S△ABC<S△DEF
C.S△ABC=S△DEF
D.不能確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】手工制作課上,小紅利用一些花布的邊角料,剪裁后裝飾手工畫,下面四個圖案是她剪裁出的空心不等邊三角形、等邊三角形、正方形、矩形花邊,其中,每個圖案花邊的寬度都相等,那么,每個圖案中花邊的內外邊緣所圍成的幾何圖形不相似的是( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com