【題目】如圖,△ABC的邊AB為⊙O的直徑,BC與⊙O交于點D,D為BC的中點,過點D作DE⊥AC于E.
(1)求證:AB=AC;
(2)求證:DE是⊙O的切線;
(3)若AB=13,BC=10,求CE的長.
【答案】
(1)證明:連結AD,如圖,
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BC,
∴D為BC的中點,
∴BD=CD,
∴AB=AC;
(2)證明:連結OD,如圖,
∵OA=OB,DB=DC,
∴OD為△ABC的中位線,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切線;
(3)解:BD= BC=5,AC=AB=13,
∵∠DCE=∠ACD,
∴△CDE∽△CAD,
∴ =
,即
=
,
∴CE= .
【解析】(1)連結AD,如圖,由圓周角定理得到∠ADB=90°,則AD⊥BC,加上BD=CD,即AD垂直平分BC,所以AB=AC;(2)連結OD,如圖,先證明OD為△ABC的中位線,根據三角形中位線性質得OD∥AC,而DE⊥AC,所以OD⊥DE,于是根據切線的判定定理可得DE是⊙O的切線;(3)易得BD= BC=5,AC=AB=13,接著證明△CDE∽△CAD,然后根據相似比可計算出CE.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,A、B、C三點的坐標為( ,0)、(3
,0)、(0,5),點D在第一象限,且∠ADB=60°,則線段CD的長的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】代數式ax2+bx+c(a≠0,a,b,c是常數)中,x與ax2+bx+c的對應值如下表:
x | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | |||
ax2+bx+c | ﹣2 | ﹣ | 1 | 2 | 1 | ﹣ | ﹣2 |
請判斷一元二次方程ax2+bx+c=0(a≠0,a,b,c是常數)的兩個根x1 , x2的取值范圍是下列選項中的( )
A.﹣ <x1<0,
<x2<2
B.﹣1<x1<﹣ ,2<x2<
C.﹣ <x1<0,2<x2<
D.﹣1<x1<﹣ ,
<x2<2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明盒子內裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,求兩次都摸到白球的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形ABCD和矩形EFGO在平面直角坐標系中,點B,F的坐標分別為(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點P(點P在GC上)是位似中心,則點P的坐標為( )
A.(0,3)
B.(0,2.5)
C.(0,2)
D.(0,1.5)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,F是AB上一點,延長CB到E,使BE=BF,連接CF并延長交AE于G.
(1)求證:△ABE≌△CBF;
(2)將△ABE繞點A逆時針旋轉90°得到△ADH,請判斷四邊形AFCH是什么特殊四邊形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,點D在BC邊上,有下列三個關系式:
① BAC=90°,② =
,③AD⊥BC.
選擇其中兩個式子作為已知,余下的一個作為結論,寫出已知,求證,并證明.
已知:
求證:
證明:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】當m,n是實數且滿足m﹣n=mn時,就稱點Q(m, )為“奇異點”,已知點A、點B是“奇異點”且都在反比例函數y=
的圖象上,點O是平面直角坐標系原點,則△OAB的面積為( )
A.1
B.
C.2
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),(
)是拋物線上兩點,則y1<y2其中結論正確的是( )
A.①②
B.②③
C.②④
D.①③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com