【題目】如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上.頂點B的坐標為(3, ),點C的坐標為(
,0),點P為斜邊OB上的一個動點,則PA+PC的最小值為( )
A.
B.
C.
D.2
【答案】B
【解析】解:法一: 作A關于OB的對稱點D,連接CD交OB于P,連接AP,過D作DN⊥OA于N,
則此時PA+PC的值最小,
∵DP=PA,
∴PA+PC=PD+PC=CD,
∵B(3, ),
∴AB= ,OA=3,∠B=60°,由勾股定理得:OB=2
,
由三角形面積公式得: ×OA×AB=
×OB×AM,
∴AM= ,
∴AD=2× =3,
∵∠AMB=90°,∠B=60°,
∴∠BAM=30°,
∵∠BAO=90°,
∴∠OAM=60°,
∵DN⊥OA,
∴∠NDA=30°,
∴AN= AD=
,由勾股定理得:DN=
,
∵C( ,0),
∴CN=3﹣ ﹣
=1,
在Rt△DNC中,由勾股定理得:DC= =
,
即PA+PC的最小值是 ,
法二:
如圖,作點C關于OB的對稱點D,連接AD,過點D作DM⊥OA于M.
∵AB= ,OA=3
∴∠AOB=30°,
∴∠DOC=2∠AOB=60°
∵OC=OD
∴△OCD是等邊三角形
∴DM=CDsin60°= ,OM=CM=CDcos60°=
∴AM=OA﹣OM=3﹣ =
∴AD= =
即PA+PC的最小值為
故選:B.
作A關于OB的對稱點D,連接CD交OB于P,連接AP,過D作DN⊥OA于N,則此時PA+PC的值最小,求出AM,求出AD,求出DN、CN,根據勾股定理求出CD,即可得出答案.
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為⊙O的內接四邊形,且對角線AC為直徑,AD=BC,過點D作DG⊥AC,垂足為E,DG分別與AB及CB延長線交于點F、M.
(1)求證:四邊形ABCD是矩形;
(2)若點G為MF的中點,求證:BG是⊙O的切線;
(3)若AD=4,CM=9,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE= AC,連接AE交OD于點F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的半徑為4cm,直線l與⊙O相交于A、B兩點,AB=4 cm,P為直線l上一動點,以1cm為半徑的⊙P與⊙O沒有公共點.設PO=dcm,則d的范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:關于x的二次函數y=﹣x2+ax(a>0),點A(n,y1)、B(n+1,y2)、C(n+2,y3)都在這個二次函數的圖象上,其中n為正整數.
(1)y1=y2 , 請說明a必為奇數;
(2)設a=11,求使y1≤y2≤y3成立的所有n的值;
(3)對于給定的正實數a,是否存在n,使△ABC是以AC為底邊的等腰三角形?如果存在,求n的值(用含a的代數式表示);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在方格紙中,△ABC的三個頂點及D,E,F,G,H五個點分別位于小正方形的頂點上.
(1)現以D,E,F,G,H中的三個點為頂點畫三角形,在所畫的三角形中與△ABC不全等但面積相等的三角形是(只需要填一個三角形)
(2)先從D,E兩個點中任意取一個點,再從F,G,H三個點中任意取兩個不同的點,以所取得這三個點為頂點畫三角形,求所畫三角形與△ABC面積相等的概率(用畫樹狀圖或列表格求解).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖.Rt△ABC內接于⊙O,BC為直徑,AB=4,AC=3,D是 的中點,CD與AB的交點為E,則
等于( )
A.4
B.3.5
C.3
D.2.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC,AC與BD相交于P.已知A(2,3),B(1,1),D(4,3),則點P的坐標為( , ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個布袋里裝有紅色、黃色、黑色三個球,它們除顏色外其余都相同,從中任意摸出1個球,記下顏色后放回,攪勻,再摸出1個球.
(1)請用樹狀圖或列表法列舉出兩次摸球可能出現的各種結果;
(2)摸到的兩個球顏色相同的概率是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com