【題目】如圖, BD 是△ABC 的角平分線, AE⊥ BD ,垂足為 F ,若∠ABC=35°,∠ C=50°,則∠CDE 的度數為( )
A.35°B.40°C.45°D.50°
科目:初中數學 來源: 題型:
【題目】(提出問題)課間,一位同學拿著方格本遇人便問:“如圖所示,在邊長為1的小正方形組成的網格中,點A、B、C都是格點,如何證明點A、B、C在同一直線上呢?”
(分析問題)一時間,大家議論開了. 同學甲說:“可以利用代數方法,建立平面直角坐標系,利用函數的知識解決”,同學乙說:“也可以利用幾何方法…”同學丙說:“我還有其他的幾何證法”……
(解決問題)請你用兩種方法解決問題
方法一(用代數方法):
方法二(用幾何方法):
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從南京站開往上海站的一輛和諧號動車,中途只?刻K州站,甲、乙、丙名互不相識的旅客同時從南京站上車.
求甲、乙、丙三名旅客在同一個站下車的概率;
求甲、乙、丙三名旅客中至少有一人在蘇州站下車的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,以正方形的頂點
為圓心的弧恰好與對角線
相切,以頂點
為圓心,正方形的邊長為半徑的弧,已知正方形的邊長為
,則圖中陰影部分的面積為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y1=﹣2x2+2,直線y2=2x+2,當x任取一值時,對應的函數值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1.例如:當x=1時,y1=0,y2=4,y1<y2,此時M=0.下列判斷:①當x>0時,y1>y2;②當x<0時,x值越大,M值越大;③使得M大于2的x值不存在;④使得M=1的x值是﹣或
.其中正確結論的個數為( 。
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2008年5月12日,四川省發生8.0級地震,某市派出兩個搶險救災工程隊趕到汶川支援,甲工程隊承擔了2400米道路搶修任務,乙工程隊比甲工程隊多承擔了600米的道路搶修任務,甲工程隊施工速度比乙工程隊每小時少修40米,結果兩工程隊同時完成任務.
問甲、乙兩工程隊每小時各搶修道路多少米.
(1)設乙工程隊每小時搶修道路x米,則用含x的式子表示:甲工程隊每小時搶修道路 米,甲工程隊完成承擔的搶修任務所需時間為 小時,乙工程隊完成承擔的搶修任務所需時間為 小時.
(2)列出方程,完成本題解答.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數m的取值范圍是( )
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.
(1)用含x的代數式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設=y,求y關于x的函數關系式,并寫出它的定義域;
(3)當∠ABE的正切值是時,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現代科技的發展已經進入到了5G時代,“5G”即第五代移動通信技術(英語:5th generation mobile networks或5th generation wireless systems、5th-Generation,簡稱5G或5G技術)是最新一代蜂窩移動通信技術,也是即4G(LTE-A、WiMax)、3G(UMTS、LTE)和2G(GSM)系統之后的延伸。中國信息通信科技集團有限公司工程師余少華院士說“同4G相比,5G的傳輸速率提高了10至100倍.”“從人人互聯、人物互聯,到物物互聯,再到人網物三者的結合,5G技術最終將構建起萬物互聯的智能世界” 如果5G網絡峰值速率是4G網絡峰值速率的10倍,那么在峰值速率下傳輸1 000MB數據,5G網絡比4G網絡快90秒,求這兩種網絡的峰值速率(MB/秒).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com