【題目】如圖,△AEF中,∠EAF=45°,AG⊥EF于點G,現將△AEG沿AE折疊得到△AEB,將△AFG沿AF折疊得到△AFD,延長BE和DF相交于點C.
(1)求證:四邊形ABCD是正方形;
(2)連接BD分別交AE、AF于點M、N,將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH,試判斷線段MN、ND、DH之間的數量關系,并說明理由.
(3)若EG=4,GF=6,BM=3,求AG、MN的長.
【答案】(1)證明見解析;(2)MN2=ND2+DH2,理由見解析;(3)
【解析】
(1)由圖形翻折變換的性質可知∠ABE=∠AGE=∠BAD=∠ADC=90°,AB=AD即可得出結論;
(2)連接NH,由△ABM≌△ADH,得AM=AH,BM=DH,∠ADH=∠ABD=45°,故∠NDH=90°,再證△AMN≌△AHN,得MN=NH,由勾股定理即可得出結論;
(3)設AG=x,則EC=x-4,CF=x-6,在Rt△ECF中,利用勾股定理即可得出AG的值,同理可得出BD的長,設NH=y,在Rt△NHD,利用勾股定理即可得出MN的值.
(1)證明:∵△AEB由△AED翻折而成,
∴∠ABE=∠AGE=90°,∠BAE=∠EAG,AB=AG,
∵△AFD由△AFG翻折而成,
∴∠ADF=∠AGF=90°,∠DAF=∠FAG,AD=AG,
∵∠EAG+∠FAG=∠EAF=45°,
∴∠ABE=∠AGE=∠BAD=∠ADC=90°,
∴四邊形ABCD是矩形,
∵AB=AD,
∴四邊形ABCD是正方形;
(2)MN2=ND2+DH2,
理由:連接NH,
∵△ADH由△ABM旋轉而成,
∴△ABM≌△ADH,
∴AM=AH,BM=DH,
∵由(1)∠BAD=90°,AB=AD,
∴∠ADH=∠ABD=45°,
∴∠NDH=90°,
∵,
∴△AMN≌△AHN,
∴MN=NH,
∴MN2=ND2+DH2;
(3)設AG=BC=x,則EC=x-4,CF=x-6,
在Rt△ECF中,
∵CE2+CF2=EF2,即(x-4)2+(x-6)2=100,x1=12,x2=-2(舍去)
∴AG=12,
∵AG=AB=AD=12,∠BAD=90°,
∴BD==
,
∵BM=3,
∴MD=BD-BM=12-3
=9
,
設NH=y,
在Rt△NHD中,
∵NH2=ND2+DH2,即y2=(9-y)2+(3
)2,解得y=5
,即MN=5
.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB,FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=6,BE=2,求四邊形ABFC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點D是弧AC的中點,∠COB=60°,過點C作CE⊥AD,交AD的延長線于點E.
(1)求證:CE為⊙O的切線;
(2)若CE=,求⊙O的半徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=6,cosB=,先將△ACB繞著頂點C順時針旋轉90°,然后再將旋轉后的三角形進行放大或縮小得到△A′CB′(點A′、C、B′的對應點分別是點A、C、B),連接A′A、B′B,如果△AA′B和△AA′B′相似,那么A′C的長是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=a(x+1)(x﹣3)與x軸交于A、B兩點,拋物線與x軸圍成的封閉區域(不包含邊界),僅有4個整數點時(整數點就是橫縱坐標均為整數的點),則a的取值范圍_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點A在反比例函數y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是( 。
A. ﹣10 B. ﹣5 C. 5 D. 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過點(﹣1,0),對稱軸l如圖所示,則下列結論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某調查機構將今年紹興市民最關注的熱點話題分為消費.教育.環保.反腐及其它共五類.根據最近一次隨機調查的相關數據,繪制的統計圖表如下:
根據以上信息解答下列問題:
(1)本次共調查_________人,請在答題卡上補全條形統計圖并標出相應數據;
(2)若紹興市約有500萬人口,請你估計最關注教育問題的人數約為多少萬人?
(3)在這次調查中,某單位共有甲.乙.丙.丁四人最關注教育問題,現準備從這四中隨機抽取兩人進行座談,求抽取的兩人恰好是甲和乙的概率(畫樹狀圖或列表說明).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com