【題目】某超市在端午節期間開展優惠活動,凡購物者可以通過轉動轉盤的方式享受折扣優惠,本次活動共有兩種方式,如圖轉盤甲和乙,方式一:轉動轉盤甲,指針指向A區域時,所購物品享受9折優惠,指針指向其它區域無優惠;方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針指向的區域字母相同,所購物品享受8折優惠,其它情況無優惠.在每個轉盤中,指針指向每個區域的可能性相同(若指針指向分界線,則重新轉動轉盤).
(1)若顧客選擇方式一,求享受9折優惠的概率.
(2)若顧客選擇方式二,請用列表法或樹狀圖法列出所有可能出現的結果:并求顧客享受8折優惠的概率.
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中,對角線AC與BD相交于點O,過點O作直線EF⊥BD,且交AC于點E,交BC于點F,連接BE、DF,且BE平分∠ABD.
(1)①求證:四邊形BFDE是菱形;②求∠EBF的度數.
(2)把(1)中菱形BFDE進行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,H為GD的中點,連接FH,并延長FH交ED于點J,連接IJ,IH,IF,IG.試探究線段IH與FH之間滿足的數量關系,并說明理由;
(3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足AB=AD時,點E是對角線AC上一點,連接DE,作EF⊥DE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AG,GE,EC三者之間滿足的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線y=上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為( )
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應荊州市“創建全國文明城市”號召,某單位不斷美化環境,擬在一塊矩形空地上修建綠色植物園,其中一邊靠墻,可利用的墻長不超過18m,另外三邊由36m長的柵欄圍成.設矩形ABCD空地中,垂直于墻的邊AB=xm,面積為ym2(如圖).
(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)若矩形空地的面積為160m2,求x的值;
(3)若該單位用8600元購買了甲、乙、丙三種綠色植物共400棵(每種植物的單價和每棵栽種的合理用地面積如下表).問丙種植物最多可以購買多少棵?此時,這批植物可以全部栽種到這塊空地上嗎?請說明理由.
甲 | 乙 | 丙 | |
單價(元/棵) | 14 | 16 | 28 |
合理用地(m2/棵) | 0.4 | 1 | 0.4 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當△ABC繞點A逆時針旋轉α(0°<α<90°)時,如圖②,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由;
(2)當△ABC繞點A逆時針旋轉45°時,如圖③,延長DB交CF于點H;
(。┣笞C:BD⊥CF;
(ⅱ)當AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0)
(1)畫出△ABC關于x軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉90°所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸;
(4)△A1B1C1與△A2B2C2成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的頂點A、B的坐標分別為(﹣1,1)、(3,0),直角頂點C在x軸上,在△ADE中,∠E=90°,點D在第三象限的雙曲線y=上,且邊AE經過點C.若AB=AD,∠BAD=90°,則k的值為( 。
A.3B.4C.﹣6D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當∠ODB=30°時,求證:BC=OD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com