【題目】平面直角坐標系中,直線l1:y=﹣ x+3與x軸交于點A,與y軸交于點B,直線l2:y=kx+2k與x軸交于點C,與直線l1交于點P.
(1)當k=1時,求點P的坐標;
(2)如圖1,點D為PA的中點,過點D作DE⊥x軸于E,交直線l2于點F,若DF=2DE,求k的值;
(3)如圖2,點P在第二象限內,PM⊥x軸于M,以PM為邊向左作正方形PMNQ,NQ的延長線交直線l1于點R,若PR=PC,求點P的坐標.
【答案】
(1)解:當k=1時,直線l2為y=x+2.
解方程組 ,
解得 ,
∴P( ,
);
(2)解:當y=0時,kx+2k=0,
∵k≠0,
∴x=﹣2,
∴C(﹣2,0)則OC=2,
當y=0時,﹣ x+3=0,
∴x=6,
∴A(6,0),OA=6,
過點P作PG⊥DF于點G,
在△PDG和△ADE中,
,
∴△PDG≌△ADE,
得DE=DG= DF,
∴PD=PF,
∴∠PFD=∠PDF
∵∠PFD+∠PCA=90°,∠PDF+∠PAC=90°
∴∠PCA=∠PAC,
∴PC=PA
過點P作PH⊥CA于點H,
∴CH= CA=4,
∴OH=2,
當x=2時,y=﹣ ×2+3=2代入y=kx+2k,得k=
(3)解:直角△PQR和直角△PMC中,
,
∴Rt△PMC≌Rt△PQR,
∴CM=RQ,
∴NR=NC,
設NR=NC=a,則R(﹣a﹣2,a),
代入y=﹣ x+3,
得﹣ (﹣a﹣2)+3=a,解得a=8,
設P(m,n),則 ,
解得 ,
∴P(﹣ ,
).
【解析】(1)解兩個函數解析式組成的方程組即可求解;(2)過點P作PG⊥DF于點G,易證△PDG≌△ADE,點P作PH⊥CA于點H,可以證明H是AC的中點,則H的坐標即可求得,進而求得P的坐標,進而求得k的值;(3)Rt△PMC≌Rt△PQR,則RQ=MC,設NR=NC=a,則R(﹣a﹣2,a),代入y=﹣ x+3,求得a的值,設P(m,n),根據P在直線l1上和RQ=MC即可列方程組求解.
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖象與
軸交于點
,點
,與
軸交于點
.
(1)求二次函數的表達式;
(2)連接,若點
在線段
上運動(不與點
重合),過點
作
,交
于點
,當
面積最大時,求N點的坐標;
(3)連接,在(2)的結論下,求
與
的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+4的圖象與x軸交于點B(-2,0),點C(8,0),與y軸交于點A.
(1)求二次函數y=ax2+bx+4的表達式;
(2)連接AC,AB,若點N在線段BC上運動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求N點的坐標;
(3)連接OM,在(2)的結論下,求OM與AC的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優秀傳統文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學生的成績作為樣本進行統計,制成如下不完整的統計圖表:
根據所給信息,解答下列問題:
(1)m= ,n= ;
(2)補全頻數分布直方圖;
(3)這200名學生成績的中位數會落在 分數段;
(4)若成績在90分以上(包括90分)為“優”等,請你估計該校參加本次比賽的3000名學生中成績是“優”等的約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標;
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com