【題目】菱形ABCD中,兩條對角線AC,BD相交于點O,∠MON+∠BCD=180°,∠MON繞點O旋轉,射線OM交邊BC于點E,射線ON交邊DC于點F,連接EF.
(1)如圖1,當∠ABC=90°時,△OEF的形狀是;
(2)如圖2,當∠ABC=60°時,請判斷△OEF的形狀,并說明理由;
(3)在(1)的條件下,將∠MON的頂點移到AO的中點O′處,∠MO′N繞點O′旋轉,仍滿足∠MO′N+∠BCD=180°,射線O′M交直線BC于點E,射線O′N交直線CD于點F,當BC=4,且 =
時,直接寫出線段CE的長.
【答案】
(1)等腰直角三角形
(2)△OEF是等邊三角形;
證明:如圖2,過O點作OG⊥BC于G,作OH⊥CD于H,
∴∠OGE=∠OGC=∠OHC=90°,
∵四邊形ABCD是菱形,
∴CA平分∠BCD,∠ABC+BCD=180°,
∴OG=OH,∠BCD=180°﹣60°=120°,
∵∠GOH+∠OGC+∠BCD+∠OHC=360°,
∴∠GOH+∠BCD=180°,
∴∠MON+∠BCD=180°,
∴∠GOH=∠EOF=60°,
∵∠GOH=∠GOF+∠FOH,∠EOF=∠GOF+∠EOG,
∴∠EOG=∠FOH,
在△EOG與△FOH中,
,
∴△EOG≌△FOH(ASA),
∴OE=OF,
∴△OEF是等邊三角形
(3)證明:如圖3,
∵菱形ABCD中,∠ABC=90°,
∴四邊形ABCD是正方形,
∴ =
,
過O點作O′G⊥BC于G,作O′H⊥CD于H,
∴∠O′GC=∠O′HC=∠BCD=90°,
∴四邊形O′GCH是矩形,
∴O′G∥AB,O′H∥AD,
∴ =
=
=
,
∵AB=BC=CD=AD=4,
∴O′G=O′H=3,
∴四邊形O′GCH是正方形,
∴GC=O′G=3,∠GO′H=90°
∵∠MO′N+∠BCD=180°,
∴∠EO′F=90°,
∴∠EO′F=∠GO′H=90°,
∵∠GO′H=∠GO′F+∠FO′H,∠EO′F=∠GO′F+∠EO′G,
∴∠EO′G=∠FO′H,
在△EO′G與△FO′H中,
,
∴△EO′G≌△FO′H(ASA),
∴O′E=O′F,
∴△O′EF是等腰直角三角形;
∵S正方形ABCD=4×4=16, =
,
∴S△O′EF=18,
∵S△O′EF= O′E2,
∴O′E=6,
在RT△O′EG中,EG= =
=3
,
∴CE=CG+EG=3+3 .
根據對稱性可知,當∠M′ON′旋轉到如圖所示位置時,
CE′=E′G﹣CG=3 ﹣3.
綜上可得,線段CE的長為3+3 或3
﹣3.
【解析】(1)△OEF是等腰直角三角形;
證明:如圖1,
∵菱形ABCD中,∠ABC=90°,
∴四邊形ABCD是正方形,
∴OB=OC,∠BOC=90°,∠BCD=90°,∠EBO=∠FCO=45°,
∴∠BOE+∠COE=90°,
∵∠MON+∠BCD=180°,
∴∠MON=90°,
∴∠COF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,
,
∴△BOE≌△COF(ASA),
∴OE=OF,
∴△OEF是等腰直角三角形;
(2)△OEF是等邊三角形;
證明:如圖2,過O點作OG⊥BC于G,作OH⊥CD于H,
∴∠OGE=∠OGC=∠OHC=90°,
∵四邊形ABCD是菱形,
∴CA平分∠BCD,∠ABC+BCD=180°,
∴OG=OH,∠BCD=180°﹣60°=120°,
∵∠GOH+∠OGC+∠BCD+∠OHC=360°,
∴∠GOH+∠BCD=180°,
∴∠MON+∠BCD=180°,
∴∠GOH=∠EOF=60°,
∵∠GOH=∠GOF+∠FOH,∠EOF=∠GOF+∠EOG,
∴∠EOG=∠FOH,
在△EOG與△FOH中,
,
∴△EOG≌△FOH(ASA),
∴OE=OF,
∴△OEF是等邊三角形
(3)證明:如圖3,
∵菱形ABCD中,∠ABC=90°,
∴四邊形ABCD是正方形,
∴ =
,
過O點作O′G⊥BC于G,作O′H⊥CD于H,
∴∠O′GC=∠O′HC=∠BCD=90°,
∴四邊形O′GCH是矩形,
∴O′G∥AB,O′H∥AD,
∴ =
=
=
,
∵AB=BC=CD=AD=4,
∴O′G=O′H=3,
∴四邊形O′GCH是正方形,
∴GC=O′G=3,∠GO′H=90°
∵∠MO′N+∠BCD=180°,
∴∠EO′F=90°,
∴∠EO′F=∠GO′H=90°,
∵∠GO′H=∠GO′F+∠FO′H,∠EO′F=∠GO′F+∠EO′G,
∴∠EO′G=∠FO′H,
在△EO′G與△FO′H中,
,
∴△EO′G≌△FO′H(ASA),
∴O′E=O′F,
∴△O′EF是等腰直角三角形;
∵S正方形ABCD=4×4=16, =
,
∴S△O′EF=18,
∵S△O′EF= O′E2,
∴O′E=6,
在RT△O′EG中,EG= =
=3
,
∴CE=CG+EG=3+3 .
根據對稱性可知,當∠M′ON′旋轉到如圖所示位置時,
CE′=E′G﹣CG=3 ﹣3.
綜上可得,線段CE的長為3+3 或3
﹣3.
所以答案是:(1)等腰直角三角形;(2)見解答過程;(3)3+3 或3
﹣3.
科目:初中數學 來源: 題型:
【題目】如圖,圓O是Rt△ABC的外接圓,∠ACB=90°,∠A=25°,過點C作圓O的切線,交AB的延長線于點D,則∠D的度數是( )
A.25°
B.40°
C.50°
D.65°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底仰角為60°,沿坡度為1: 的坡面AB向上行走到B處,測得廣告牌頂部C的仰角為45°,又知AB=10m,AE=15m,求廣告牌CD的高度(精確到0.1m,測角儀的高度忽略不計)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】幾何證明:
(1)已知:如圖1,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG⊥CE,垂足分別是F、G,連接FG,延長AF、AG,與直線BC相交.求證:FG=(AB+BC+AC).
(2)若BD、CE分別是△ABC的內角平分線,其余條件不變(如圖1),線段FG與△ABC的三邊又有怎樣的數量關系?寫出你的猜想,并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2008年奧運會期間,一輛大巴車在一條南北方向的道路上來回運送旅客,某一天早晨該車從A地出發,晚上到達B地,預定向北為正方向,當天行駛記錄如下(單位:千米)
+18,-9,+7,-14,-6,+13,-6,-8
請你根據計算回答下列問題:
(1)B地在A地何方?相距多少千米?
(2)該車這一天共行駛多少千米?
(3)若該車每千米耗油0.4升,這一天共耗油多少升?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解全校2000名學生每周去圖書館時間的情況,隨機調查了其中的100名學生,對這100名學生每周去圖書館的時間x(單位:小時)進行了統計.根據所得數據繪制了一幅不完整的統計圖,并知道每周去圖書館的時間在6≤x<8小時的學生人數占20%.根據以上信息及統計圖解答下列問題:
(1)本次調查屬于調查,樣本容量是;
(2)請補全頻數分布直方圖中空缺的部分;
(3)若從這100名學生中隨機抽取1名學生,求抽取的這個學生每周去圖書館的時間恰好在8﹣10小時的概率;
(4)估計全校學生每周去圖書館的時間不少于6小時的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A在數軸上對應的數為a,點B在數軸上對應的數為b,且|a+3|+|b-2|=0,A,B 之間的距離記為|AB|.請回答問題:
(1)直接寫出a,b, |AB|的值. a= ,b = , |AB|= ;
(2)設點P在數軸上對應的數為x,當|PA|-|PB|=2時,求x的值;
(3)若點P在點A的左側,M、N分別是PA、PB的中點.當點P在點A的左側移動時,式子|PN|-|PM|的值是否發生改變?若不變,請求出其值;若發生變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩位同學在一次實驗中統計了某一結果出現的頻率,給出的統計圖如圖所示,則 符合這一結果的實驗可能是( )
A. 擲一枚正六面體的骰子,出現6點的概率
B. 擲一枚硬幣,出現正面朝上的概率
C. 任意寫出一個整數,能被2整除的概率
D. 一個袋子中裝著只有顏色不同,其他都相同的兩個紅球和一個黃球,從中任意取出一個是黃球的概率
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com