【題目】某班數學興趣小組利用數學活動課時間測量位于烈山山頂的炎帝雕像高度,已知烈山坡面與水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進1620尺到達E點,在點E處測得雕像頂端A的仰角為60°,求雕像AB的高度.
【答案】雕像AB的高度為95尺.
【解析】
試題分析:過點E作EF⊥AC,EG⊥CD,在Rt△DEG中,求得EG的長,即可得BF的長;在Rt△BEF中,可得EF=BF,在Rt△AEF中,∠AEF=60°,設AB=x,根據銳角三角函數求得x即可.
試題解析:如圖,
過點E作EF⊥AC,EG⊥CD,
在Rt△DEG中,∵DE=1620,∠D=30°,
∴EG=DEsin∠D=1620×=810,
∵BC=857.5,CF=EG,
∴BF=BC﹣CF=47.5,
在Rt△BEF中,tan∠BEF=,
∴EF=BF,
在Rt△AEF中,∠AEF=60°,設AB=x,
∵tan∠AEF=,
∴AF=EF×tan∠AEF,
∴x+47.5=3×47.5,
∴x=95,
答:雕像AB的高度為95尺.
科目:初中數學 來源: 題型:
【題目】南海是我國的南大門,如圖所示,某天我國一艘海監執法船在南海海域正在進行常態化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監視巡查,經過一段時間后,在C處成功攔截不明船只,問我海監執法船在前往監視巡查的過程中行駛了多少海里(最后結果保留整數)?
(參考數據:cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732,
=1.414)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法不正確的是( )
A.兩組對邊分別相等的四邊形是平行四邊形
B.對角線相等的平行四邊形是矩形
C.對角線互相平分且垂直的四邊形是菱形
D.一個角是直角的四邊形是矩形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O為矩形ABCD內的一點,滿足OD=OC,若O點到邊AB的距離為d,到邊DC的距離為3d,且OB=2d,求該矩形對角線的長________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com