【題目】下列條件中,不能判斷△ABC是直角三角形的是( 。
A. a:b:c=3:4:5 B. ∠A:∠B:∠C=3:4:5
C. ∠A+∠B=∠C D. a:b:c=1:2:
【答案】B
【解析】
A、根據比值結合勾股定理的逆定理即可判斷出三角形的形狀;B、根據角的比值求出各角的度數,便可判斷出三角形的形狀;C、根據三角形的內角和為180度,即可計算出∠C的值;D、根據比值結合勾股定理的逆定理即可判斷出三角形的形狀.
A、因為a:b:c=3:4:5,所以設a=3x,b=4x,c=5x,則(3x)2+(4x)2=(5x)2,故為直角三角形,故A選項不符合題意;
B、因為∠A:∠B:∠C=3:4:5,所以設∠A=3x,則∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是銳角三角形,故B選項符合題意;
C、因為∠A+∠B=∠C,∠A+∠B+∠C=180°,則∠C=90°,故為直角三角形,故C選項不符合題意;
D、因為a:b:c=1:2:,所以設a=x,b=2x,c=
x,則x2+(
x)2=(2x)2,故為直角三角形,故D選項不符合題意,
故選B.
科目:初中數學 來源: 題型:
【題目】一副直角三角板疊放在一起可以拼出多種圖形,如圖①—④,每幅圖中所求角度正確的個數有( )
①∠BFD=15°;②∠ACD+∠ECB=150°;③∠BGE=45° ;④∠ACE=30°
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD的對角線AC與BD交于點O,給出下列四個論斷:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
請你從中選擇兩個論斷作為條件,以“四邊形ABCD為平行四邊形”作為結論,完成下列各題:
(1)構造一個真命題,畫圖并給出證明;
(2)構造一個假命題,舉反例加以說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了抓住梵凈山文化藝術節的商機,某商店決定購進A、B兩種藝術節紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發現
如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.填空:
①∠AEB的度數為______;
②線段AD,BE之間的數量關系為______.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數及線段CM,AE,BE之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點D是AC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合,連接BE、EC.
試猜想線段BE和EC的數量及位置關系,并證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為打造書香校園,購進了甲、乙兩種型號的新書柜來放置新買的圖書,甲型號書柜共花了15000元,乙型號書柜共花了18000元,乙型號書柜比甲型號書柜單價便宜了300元,購買乙型號書柜的數量是甲型號書柜數量的2倍.求甲、乙型號書柜各購進多少個?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com