精英家教網 > 初中數學 > 題目詳情

【題目】如圖1ABC沿BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿B1A1C的平分線A1B2折疊,剪掉重疊部分;將余下部分沿BnAnC的平分線AnBn+1折疊,Bn與點C重合.無論折疊多少次,只要最后一次恰好重合,我們就稱BACABC的好角

小麗展示了確定BACABC的好角的兩種情形.情形一如圖2,沿等腰三角形ABC頂角BAC的平分線AB1折疊,B與點C重合;情形二如圖3沿ABCBAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿B1A1C的平分線A1B2折疊,此時點B1與點C重合

1小麗經過三次折疊發現了BACABC的好角,請探究BC不妨設BC之間的等量關系

2根據以上內容猜想若經過n次折疊BACABC的好角BC不妨設BC之間的等量關系為 ;

3如果一個三角形的最小角是15°,且滿足該三角形的三個角均是此三角形的好角,則此三角形另兩個角的度數為

【答案】1B=3C;(2B=nC;(315°,150°

【解析】試題分析:1)仔細分析題意根據折疊的性質及好角的定義即可作出判斷;
2)因為經過三次折疊∠BAC是△ABC的好角,所以第三次折疊的 由此即可求得結果;

3)因為最小角是15°是△ABC的好角,根據好角定義,則可設另兩角分別為(其中都是正整數),由題意得所以 再根據都是正整數可得 的整數因子,從而可以求得結果

試題解析:(1)ABC中,∠B=2C,經過兩次折疊,∠BAC是△ABC的好角;

理由如下:小麗展示的情形二中,

∵沿∠BAC的平分線折疊,

又∵將余下部分沿的平分線折疊,此時點與點C重合,

(外角定理),

∴∠B=2C

故答案是:是;

(2)B=3C;

在△ABC,沿∠BAC的平分線折疊,剪掉重復部分;將余下部分沿的平分線折疊,剪掉重復部分,將余下部分沿的平分線折疊,與點C重合,則∠BAC是△ABC的好角.

證明如下:∵根據折疊的性質知,

∴根據三角形的外角定理知,

∵根據四邊形的外角定理知,

根據三角形ABC的內角和定理知,

∴∠B=3C

由小麗展示的情形一知,當∠B=C時,∠BAC是△ABC的好角;

由小麗展示的情形二知,當∠B=2C時,∠BAC是△ABC的好角;

由小麗展示的情形三知,當∠B=3C時,∠BAC是△ABC的好角;

故若經過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>C)之間的等量關系為∠B=nC

故答案為:∠B=3C;B=nC

(3)(2)知,∠B=nC,BAC是△ABC的好角,

因為最小角是是△ABC的好角,

根據好角定義,則可設另兩角分別為 (其中m、n都是正整數).

由題意,所以m(n+1)=11

因為m、n都是正整數,所以mn+1 的整數因子,

因此有:

所以m=1n=10.

所以

所以該三角形的另外兩個角的度數分別為:15°,150°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我們把正六邊形對角線的交點稱為它的中心,正六邊形的頂點及它的中心稱作特征點,如圖(1)有六個頂點和一個中心點,因此共有7個特征點,照圖(1)的方式繼續排列正六邊形,使得相鄰兩個正六邊形的一邊重合,這樣得到圖(2),圖(3

觀察以上圖形得到表:

圖形的名稱

特征點的個數

1

7

2

12

1)第n個圖形的特征點有多少個?

2)第100個圖形的特征點有多少個?

3)第幾個圖形有2017個特征點?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形網格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應點.

1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;

2)若連接AA′,CC′,則這兩條線段之間的關系是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店第一次用600元購進2B鉛筆若干支,第二次又用600元購進該款鉛筆,但這次每支的進價是第一次進價的倍,購進數量比第一次少了30支.

(1)求第一次每支鉛筆的進價是多少元?

(2)若要求這兩次購進的鉛筆按同一價格全部銷售完畢后獲利不低于420元,問每支售價至少是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料

小明遇到這樣一個問題:求計算所得多項式的一次項系數.

小明想通過計算所得的多項式解決上面的問題,但感覺有些繁瑣,他想探尋一下,是否有相對簡潔的方法.

他決定從簡單情況開始,先找所得多項式中的一次項系數.通過觀察發現:

也就是說,只需用中的一次項系數1乘以中的常數項3,再用中的常數項2乘以中的一次項系數2,兩個積相加,即可得到一次項系數.

延續上面的方法,求計算所得多項式的一次項系數.可以先用的一次項系數1 的常數項3, 的常數項4,相乘得到12;再用的一次項系數2 的常數項2, 的常數項4,相乘得到16;然后用的一次項系數3 的常數項2, 的常數項3,相乘得到18.最后將1216,18相加,得到的一次項系數為46

參考小明思考問題的方法,解決下列問題:

1)計算所得多項式的一次項系數為

2)計算所得多項式的一次項系數為

3)若計算所得多項式的一次項系數為0,則=_________

4)若的一個因式,則的值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明和同桌小聰在課后復習時,對下面的一道思考題進行了認真的探索.

【思考題】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時點B到墻AC的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么點B將向外移動________米.

解完【思考題】后,小聰提出了如下兩個問題:

(1)在【思考題】中,將下滑0.4改為下滑0.9,那么該題的答案會是0.9米嗎?為什么?

(2)在【思考題】中,梯子的頂端從A處沿墻AC下滑的距離與點B向外移動的距離,有可能相等嗎?為什么?

請你解答小聰提出的這兩個問題.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC是一個三角形的紙片,點D,E分別是ABCAB,AC上的兩點

(1)如圖①,如果沿直線DE折疊,則∠BDA′與∠A的關系是____________;

(2)如果折成圖②的形狀,猜想∠BDA′,CEA′和∠A的關系,并說明理由

(3)如果折成圖③的形狀,猜想∠BDA′,CEA′和∠A的關系,并說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:

解答“已知,且,,確定的取值范圍”有如下解,

解:∵

又∵,

又∵,

,

同理得:

由①②得

的取值范圍是

請按照上述方法,完成下列問題:

)已知,且,,求的取值范圍.

)已知,,若,且,求得取值范圍(結果用含的式子表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖, ABC的中線ADBE相交于點F,下列結論正確的有

①SABD=SDCA② SAEF=SBDF③S四邊形EFDC=2SAEF;④SABC=3SABF

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视