【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.
(1)求證:△ADE≌△CBF
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結論.
【答案】
(1)
證明:∵四邊形ABCD是平行四邊形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分別為邊AB、CD的中點,
∴AE=AB,CF=
CD,
∴AE=CF,
在△ADE和△CBF中,
∵
,
∴△ADE≌△CBF(SAS);
(2)
解:
若∠ADB是直角,則四邊形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四邊形BEDF是平行四邊形,
連接EF,在ABCD中,E、F分別為邊AB、CD的中點,
∴DF∥AE,DF=AE,
∴四邊形AEFD是平行四邊形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四邊形BFDE是平行四邊形,
∴四邊形BFDE是菱形.
【解析】(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分別為邊AB、CD的中點,可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先證明BE與DF平行且相等,然后根據一組對邊平行且相等的四邊形是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據菱形的判定可以得到四邊形是菱形.
科目:初中數學 來源: 題型:
【題目】在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中點.
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點A落在點A′處,若A′為CE的中點,則折痕DE的長為( )
A.
B.3
C.2
D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B分別在x,y軸上,點D在第一象限內,DC⊥x軸于點C,AO=CD=2,AB=DA= ,反比例函數y=
(k>0)的圖像過CD的中點E.
(1)求k的值;
(2)△BFG和△DCA關于某點成中心對稱,其中點F在y軸上,試判斷點G是否在反比例函數的圖像上,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=x﹣6與x軸、y軸分別交于A、B兩點,點E從B點出發,以每秒1個單位長度的速度沿線段BO向O點移動(不考慮點E與B、O兩點重合的情況),過點E作EF∥AB,交x軸于點F,將四邊形ABEF沿直線EF折疊后,與點A對應的點記作點C,與點B對應的點記作點D,得到四邊形CDEF,設點E的運動時間為t秒.
(1)畫出當t=2時,四邊形ABEF沿直線EF折疊后的四邊形CDEF(不寫畫法)
(2)在點E運動過程中,CD交x軸于點G,交y軸于點H,試探究t為何值時,△CGF的面積為;
(3)設四邊形CDEF落在第一象限內的圖形面積為S,求S關于t的函數解析式,并求出S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課前預習是學習的重要環節,為了了解所教班級學生完成課前預習的具體情況,某班主任對本班部分學生進行了為期半個月的跟蹤調查,他將調查結果分為四類:A﹣優秀,B﹣良好,C﹣一般,D﹣較差,并將調查結果繪制成以下兩幅不完整的統計圖.
請你根據統計圖,解答下列問題:
(1)本次一共調查了多少名學生?
(2)C類女生有 名,D類男生有 名,并將條形統計圖補充完整;
(3)若從被調查的A類和C類學生中各隨機選取一位同學進行“一幫一”互助學習,請用列表法或畫樹狀圖的方法求出所選同學中恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知下列命題:
①在Rt△ABC中,∠C=90°,若∠A>∠B,則sin∠A>sinB;
②四條線段a,b,c,d中,若=
,則ad=bc;
③若a>b,則a(m2+1)>b(m2+1);
④若|﹣x|=﹣x,則x≥0.
其中原命題與逆命題均為真命題的是( 。
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com