【題目】Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一點,⊙O交AB于點D,交BC延長線于點E.連接ED,交AC于點G,且AG=AD.
(1)求證:AB與⊙O相切;
(2)設⊙O與AC的延長線交于點F,連接EF,若EF∥AB,且EF=5,求BD的長.
【答案】(1)證明見解析(2)
【解析】分析:(1)連結OD,由∠ACB=90°,可得∠OED+∠EGC=90°,再由OD=OE,根據等腰三角形的性質可得∠ODE=∠OED,再因AG=AD,根據等腰三角形的性質可得∠ADG=∠AGD ,由∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°,可得OD⊥AB ,所以AB是⊙O的切線;(2)連接OF,由EF∥AB,AC:BC=4:3,可得CF:CE=4:3.在Rt△ECF中,EF=5,求得CF=4,CE=3.設半徑=r,則OF=r,CF=4,CO=r-3.
在Rt△OCF中,由勾股定理求得r=, 再證得△CEF∽△DBO,根據相似三角形的性質可得
,由此求得BD=
.
詳解:
(1)證明:連結OD
∵∠ACB=90°,
∴∠OED+∠EGC=90°,
∴OD=OE,
∴∠ODE=∠OED,
∵AG=AD,
∴∠ADG=∠AGD ,
∵∠AGD=∠EGC,
∴∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°,
∴OD⊥AB ,
∵OD為半徑,
∴AB是⊙O的切線;
(2)連接OF.
∵EF∥AB,AC:BC=4:3,
∴CF:CE=4:3.
又∵EF=5,
∴CF=4,CE=3.
設半徑=r,則OF=r,CF=4,CO=r-3.
在Rt△OCF中,由勾股定理,可得r=.
∵EF∥AB,
∴∠CEF=∠B,
∴△CEF∽△DBO,
∴=
,
∴BD=.
科目:初中數學 來源: 題型:
【題目】楊陽同學沿一段筆直的人行道行走,在由A步行到達B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標語,其具體信息匯集如下:
如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據上述信息求標語CD的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三角形中,頂角等于的等腰三角形稱為黃金三角形,如圖
,在
中,已知:
,且
.
在圖
中,用尺規作
的垂直平分線交
于
,并連接
(保留作圖痕跡,不寫作法);
是不是黃金三角形?如果是,請給出證明;如果不是,請說明理由;
設
,試求
的值;
如圖
,在
中,已知
,
,且
,請直接寫出
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A(2,0),B(0,4),若以B,O,C為頂點的三角形與△ABO全等,則點C的坐標不能為( )
A.(0,﹣4)B.(﹣2,0)C.(2,4)D.(﹣2,4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點O,過點O作DE∥BC,分別交AB、AC于點D、E,AB=10,AC=6,求△ADE的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】李航想利用太陽光測量樓高.他帶著皮尺來到一棟樓下,發現對面墻上有這棟樓的影子,針對這種情況,他設計了一種測量方案,具體測量情況如下:如示意圖,李航邊移動邊觀察,發現站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點A、E、C在同一直線上).已知李航的身高EF是1.6m,請你幫李航求出樓高AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所給的A、B、C三個幾何體中,按箭頭所示的方向為它們的正面,設A、B、C三個幾何體的主視圖分別是A、B
、C
;左視圖分別是A
、B
、C
;俯視圖分別是A3、B3、C3.
(1)請你分別寫出A、A
、A
、B
、B
、B
、C
、C
、C
圖形的名稱;
(2)小剛先將這9個視圖分別畫在大小、形狀完全相同的9張卡片上,并將畫有A、A
、A
的三張卡片放在甲口袋中,畫有B
、B
、B
的三張卡片放在乙口袋中,畫有C
、C
、C
的三張卡片放在丙口袋中,然后由小亮隨機從這三個口袋中分別抽取一張卡片.
①畫出樹狀圖,求出小亮隨機抽取的三張卡片上的圖形名稱都相同的概率;
②小亮和小剛做游戲,游戲規則規定:在小亮隨機抽取的三張卡片中只有兩張卡片上的圖形名稱相同時,小剛獲勝;三張卡片上的圖形名稱完全不同時,小亮獲勝.這個游戲對雙方公平嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小婷家與學校之間是一條筆直的公路,小婷從家步行前往學校的途中發現忘記帶昨天的回家作業本,便向路人借了手機打給媽媽,媽媽接到電話后,帶上作業本馬上趕往學校,同時小婷沿原路返回兩人相遇后,小婷立即趕往學校,媽媽沿原路返回家,并且小婷到達學校比媽媽到家多用了5分鐘,若小婷步行的速度始終是每分鐘100米,小婷和媽媽之間的距離y與小婷打完電話后步行的時間x之間的函數關系如圖所示
媽媽從家出發______分鐘后與小婷相遇;
相遇后媽媽回家的平均速度是每分鐘______米,小婷家離學校的距離為______米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次蠟燭燃燒實驗中,蠟燭燃燒時剩余部分的高度y(cm)是燃燒時間x(h) 的一次函數.某蠟燭的高度為30cm,燃燒3h后,蠟燭剩余部分的高度為12cm.
(1)求蠟燭燃燒時y(cm)與x(h)之間的函數表達式;
(2)求出蠟燭從點燃到燃盡所用的時間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com