【題目】如圖,在△ABD中,AB=AD,以AB為直徑的⊙F交BD于點C,交AD與點E,CG⊥AD于點G.
(1)求證:GC是⊙F的切線;
(2)填空:①若△BCF的面積為15,則△BDA的面積為
②當∠GCD的度數為時,四邊形EFCD是菱形.
【答案】
(1)證明:∵AB=AD,FB=FC,
∴∠B=∠D,∠B=∠BCF,
∴∠D=∠BCF,
∴CF∥AD,
∵CG⊥AD,
∴CG⊥CF,
∴GC是⊙F的切線
(2)60;30°
【解析】(2)解:①∵CF∥AD,
∴△BCF∽△BDA,
∴ =
,△BCF的面積:△BDA的面積=1:4,
∴△BDA的面積=4△BCF的面積=4×15=60;
所以答案是:60;
②當∠GCD的度數為30°時,四邊形EFCD是菱形.理由如下:
∵CG⊥CF,∠GCD=30°,
∴∠FCB=60°,
∵FB=FC,
∴△BCF是等邊三角形,
∴∠B=60°,CF=BF= AB,
∵AB=AD,
∴△ABD是等邊三角形,CF= AD,
∴∠A=60°,
∵AF=EF,
∴△AEF是等邊三角形,
∴AE=AF= AB=
AD,
∴CF=DE,
又∵CF∥AD,
∴四邊形EFCD是平行四邊形,
∵CF=EF,
∴四邊形EFCD是菱形;
所以答案是:30°.
科目:初中數學 來源: 題型:
【題目】某校舉行全體學生“漢字聽寫”比賽,每位學生聽寫漢字39個.隨機抽取了部分學生的聽寫結果,繪制成如下的圖表.
組別 | 正常字數x | 人數 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據以上信息完成下列問題:
(1)統計表中的m= , n= , 并補全條形統計圖;
(2)扇形統計圖中“C組”所對應的圓心角的度數是;
(3)已知該校共有900名學生,如果聽寫正確的字的個數少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某記者在某區隨機選取了幾個停車場對開車司機進行了相關的調查,本次調查結果有四種情形:
A.喝酒后開車 B.喝酒后不開車或請代駕 C.開車當天不喝酒 D.從不喝酒
將這次調查情況整理并繪制了如下尚不完整的兩個統計圖.請根據相關信息,解答下列問題:
(1)該記者本次一共調查了名司機;
(2)圖1中情況D所在扇形的圓心角為°;
(3)補全圖2;
(4)本次調查中,記者隨機采訪其中的一名司機,則他屬于情況C的概率是
(5)若該區有3萬名司機,則其中不違反“酒駕”禁令的人數約為人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),扇形AOB中,OA=10,∠AOB=36°.若固定B點,將此扇形依順時針方向旋轉,得一新扇形A′O′B,其中O′點在直線BA上,如圖(2)所示,則O點旋轉至O′點所經過的軌跡長度(弧長)為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1在平面直角坐標系中,點O為坐標原點,已知拋物線y=a(x+1)(x﹣3)與x軸相交于A,B兩點(點A在點B的左側),與y軸正半軸交于點C,且∠ABC=45°.
(1)求a的值;
(2)如圖2,點D在線段BC上(不與C重合),當AD=AC時,求D點坐標;
(3)如圖3,在(2)的條件下,E為拋物線上一點,且在第一象限,過E作EF∥AD與AC相交于點F,當EF被BC平分時,求點E坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究證明:
(1)如圖1,在△ABC中,AB=AC,點E是BC上的一個動點,EG⊥AB,EF⊥AC,CD⊥AB,點G,F,D分別是垂足.求證:CD=EG+EF;
猜想探究:
(2)如圖2,在△ABC中,AB=AC,點E是BC的延長線上的一個動點,EG⊥AB于G,EF⊥AC交AC延長線于F,CD⊥AB于D,直接猜想CD、EG、EF之間的關系為;
(3)如圖3,邊長為10的正方形ABCD的對角線相交于點O、H在BD上,且BH=BC,連接CH,點E是CH上一點,EF⊥BD于點F,EG⊥BC于點G,則EF+EG= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.
(1)已知點M,N是線段AB的勾股分割點,若AM=2,MN=3,求BN的長;
(2)如圖2,在△ABC中,FG是中位線,點D,E是線段BC的勾股分割點,且EC>DE≥BD,連接AD,AE分別交FG于點M,N,求證:點M,N是線段FG的勾股分割點;
(3)已知點C是線段AB上的一定點,其位置如圖3所示,請在BC上畫一點D,使點C,D是線段AB的勾股分割點(要求尺規作圖,保留作圖痕跡,畫一種情形即可);
(4)如圖4,已知點M,N是線段AB的勾股分割點,MN>AM≥BN,△AMC,△MND和△NBE均為等邊三角形,AE分別交CM,DM,DN于點F,G,H,若H是DN的中點,試探究S△AMF , S△BEN和S四邊形MNHG的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2015年6月28日,“合福高鐵”正式開通,對南平市的旅游產業帶來了新的發展機遇.某旅行社抽樣調查了2015年8月份該社接待來南平市若干個景點旅游的人數,并將調查結果繪制成如下兩幅不完整的統計圖表,請根據圖表信息回答下列問題:
景點 | 頻數 | 頻率 |
九曲溪 | 116 | 0.29 |
歸宗巖 | 0.25 | |
天成奇峽 | 84 | 0.21 |
溪源峽谷 | 64 | 0.16 |
華陽山 | 36 | 0.09 |
(1)此次共調查人,
(2)補全條形統計圖;
(3)由上表提供的數據可以制成扇形統計圖,則“天成奇峽”所對扇形的圓心角為°;
(4)該旅行社預計今年8月份將要接待來以上景點的游客約2 500人,根據以上信息,請你估計去“九曲溪”的游客大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABE是⊙O的內接三角形,AB為直徑,過點B的切線與AE的延長線交于點C,D是BC的中點,連接DE,連接CO,線段CO的延長線交⊙O于F,FG⊥AB于G.
(1)求證:DE是⊙O的切線;
(2)若AE=4,BE=2,求AG的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com