【題目】如圖1,為放置在水平桌面上的臺燈,底座的高
為
.長度均為
的連桿
,
與
始終在同一水平面上.
(1)旋轉連桿,
,使
成平角,
,如圖2,求連桿端點
離桌面
的高度
.
(2)將(1)中的連桿繞點
逆時針旋轉,使
,如圖3,問此時連桿端點
離桌面
的高度是增加了還是減少?增加或減少了多少?(精確到
,參考數據:
,
)
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以邊AB為直徑的⊙O經過點C,E是⊙O上的一點,且∠BEC=45°.
(1)試判斷CD與⊙O的位置關系,并說明理由;
(2)若BE=8cm,sin∠BCE= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,設二次函數,其中
.
(1)若函數的圖象經過點
,求函數
的表達式;
(2)若一次函數的圖象與函數
的圖象經過
軸上同一點,探究實數
滿足的關系式;若
隨
的變化能取得最大值,證明:當
取得最大值時,拋物線
與
軸只有一個交點;
(3)已知點和
在函數
的圖象上,若
,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點F在DE的延長線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個數是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,菱形ABCD的周長為20cm,對角線AC=8cm,直線l從點A出發,以1cm/s的速度沿AC向右運動,直到過點C為止在運動過程中,直線l始終垂直于AC,若平移過程中直線l掃過的面積為S(cm2),直線l的運動時間為t(s),則下列最能反映S與t之間函數關系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是⊙O的直徑,BC是弦,四邊形OBCD是平行四邊形,AC與OB相交于點P,給出下列結論:①AC⊥CD;②∠CAD=30°;③OB⊥AC;④CD=2OP.其中正確的個數為( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點”:如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強相似點”.解決問題:
(1)如圖1,∠A=∠B=∠DEC=45°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,A、B、C、D四點均在正方形網格(網格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形ABCD的邊AB上的強相似點;
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB與BC的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,CD=2,AD=4,點P在BC上,將△ABP沿AP折疊,點B恰好落在對角線AC上的E點.O為AC上一點,⊙O經過點A,P.
(1)求證:BC是⊙O的切線;
(2)在邊CB上截取CF=CE,點F是線段BC的黃金分割點嗎?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com