精英家教網 > 初中數學 > 題目詳情
如圖,OB、OC分別平分∠ABC與∠ACB,MN∥BC,若AB=24,AC=36,則△AMN的周長是
60
60
分析:根據角平分線的定義可得∠ABO=∠OBC,再根據兩直線平行,內錯角相等可得∠OBC=BOM,從而得到∠ABO=∠BOM,根據等角對等邊的性質可得BM=OM,同理可得CN=ON,然后求出△AMN的周長=AB+AC,代入數據進行計算即可得解.
解答:解:∵OB平分∠ABC,
∴∠ABO=∠OBC,
∵MN∥BC,
∴∠OBC=BOM,
∴∠ABO=∠BOM,
∴BM=OM,
同理可得CN=ON,
∴△AMN的周長=AM+MO+ON+AN=AM+BM+CN+AN=AB+AC,
∵AB=24,AC=36,
∴△AMN的周長=24+36=60.
故答案為:60.
點評:本題考查了等腰三角形的判定與性質,主要利用了等角對等邊的性質,兩直線平行,內錯角相等的性質,是基礎題,熟記性質是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,OB、OC分別為定角∠AOD內的兩條動射線
(1)當OB、OC運動到如圖的位置時,∠AOC+∠BOD=110°,∠AOB+∠COD=50°,求∠AOD的度數;
(2)在(1)的條件下,射線OM、ON分別為∠AOB、∠COD的平分線,當∠COB繞著點O旋轉時,下列結論:①∠AOM-∠DON的值不變;②∠MON的度數不變.可以證明,只有一個是正確的,請你作出正確的選擇并求值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OB、OC分別為∠ABC,∠ACB的平分線,∠BOC隨著∠A的變化而變化.為探究∠A和∠BOC的關系,現采取如下兩種方案,在變化過程中,設∠A為x°,∠BOC為y°.
方案甲:用量角器量出∠A、∠BOC的不斷變化時的具體數據,并列表如下:精英家教網
x 10 20 30 40
y 95 100 105 110
建立直角坐標系,并描點、連線,猜測y與x之間的函數關系,求出y與x的函數關系式.
方案乙:利用角平分線的性質及三角形內角和為180°的性質,直接進行計算,求出y與x之間的函數關系.
(1)若x=60°,則y=
 
.(請直接寫精英家教網出結果)
(2)請采用方案甲或方案乙中的一種進行解答,得到∠A與∠BOC之間的關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,OB、OC分別平分∠ABC和∠ACB,若∠A=60°,則∠O等于( 。
A、100°B、120°C、140°D、150°

查看答案和解析>>

科目:初中數學 來源: 題型:

3、如圖,OB,OC分別平分∠ABC與∠ACB,MN∥BC,若AB=24,AC=36,則△AMN的周長是(  )

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视