【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結論:①abc>0;②2a+b=0;③若m為任意實數,則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中,正確結論的個數為( )
A.1B.2C.3D.4
【答案】B
【解析】
由拋物線的開口方向、對稱軸位置、與y軸的交點位置判斷出a、b、c與0的關系,進而判斷①;根據拋物線對稱軸為x==1判斷②;根據函數的最大值為:a+b+c判斷③;求出x=﹣1時,y<0,進而判斷④;對ax12+bx1=ax22+bx2進行變形,求出a(x1+x2)+b=0,進而判斷⑤.
解:①拋物線開口方向向下,則a<0,
拋物線對稱軸位于y軸右側,則a、b異號,即b>0,
拋物線與y軸交于正半軸,則c>0,
∴abc<0,故①錯誤;
②∵拋物線對稱軸為直線x==1,
∴b=﹣2a,即2a+b=0,故②正確;
③∵拋物線對稱軸為直線x=1,
∴函數的最大值為:a+b+c,
∴當m≠1時,a+b+c>am2+bm+c,即a+b>am2+bm,故③錯誤;
④∵拋物線與x軸的一個交點在(3,0)的左側,而對稱軸為直線x=1,
∴拋物線與x軸的另一個交點在(﹣1,0)的右側,
∴當x=﹣1時,y<0,
∴a﹣b+c<0,故④錯誤;
⑤∵ax12+bx1=ax22+bx2,
∴ax12+bx1﹣ax22﹣bx2=0,
∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,
∴(x1﹣x2)[a(x1+x2)+b]=0,
而x1≠x2,
∴a(x1+x2)+b=0,即x1+x2=﹣,
∵b=﹣2a,
∴x1+x2=2,故⑤正確.
綜上所述,正確的是②⑤,有2個.
故選:B.
科目:初中數學 來源: 題型:
【題目】已知直線y1=﹣x+2和拋物線相交于點A,B.
(1)當k=時,求兩函數圖象的交點坐標;
(2)二次函數y2的頂點為P,PA或PB與直線y1=﹣x+2垂直時,求k的值.
(3)當﹣4<x<2時,y1>y2,試直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數與
(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.
(1)當m=4,n=20時.
①若點P的縱坐標為2,求直線AB的函數表達式.
②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數量關系;若不能,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國魏晉時期的數學家劉徽首創“割圓術”,奠定了中國圓周率計算在世界上的領先地位.劉徽提出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣”,由此求得圓周率的近似值.如圖,設半徑為
的圓內接正
邊形的周長為
,圓的直徑為
,當
時,
,則當
時,
______.(結果精確到0.01,參考數據:
,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:AB是⊙O的直徑,C、G是⊙O上兩點,且點C是劣弧AG的中點,過點C的直線CD⊥BG的延長線于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線;
(2)若ED=DB,求證:3OF=2DF;
(3)在(2)的條件下,連接AD,若CD=3,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖AM∥BN,C是BN上一點, BD平分∠ABN且過AC的中點O,交AM于點D,DE⊥BD,交BN于點E.
(1)求證:△ADO≌△CBO.
(2)求證:四邊形ABCD是菱形.
(3)若DE = AB = 2,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在中,
,
,過點
的直線
垂直于線段
所在的直線.設點
,
關于直線
的對稱點分別為點
,
(1)在圖1中畫出關于直線
對稱的三角形
.
(2)若,求
的度數.(用
表示)
(3)若點關于直線
的對稱點為
,連接
,
.請寫出
、
之間的數量關系和位置關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校開設了“3D”打印、數學史、詩歌欣賞、陶藝制作四門校本課程,為了解學生對這四門校本課程的喜愛情況,對學生進行了隨機問卷調査(問卷調査表如圖所示),將調査結果整理后繪制例圖1、圖2兩幅均不完整的統計圖表.
最受歡迎的校本課程調查問卷
您好!這是一份關于您最喜歡的校本課程問卷調查表,請在表格中選擇一個(只能選一個)您最喜歡的課程選項,在其后空格內打“√”,非常感謝您的合作.
選項 | 校本課程 | |
A | 3D打印 | |
B | 數學史 | |
C | 詩歌欣賞 | |
D | 陶藝制作 |
校本課程 | 頻數 | 頻率 |
A | 36 | 0.45 |
B | 0.25 | |
C | 16 | b |
D | 8 | |
合計 | a | 1 |
請您根據圖表中提供的信息回答下列問題:
(1)統計表中的a= ,b= ;
(2)“D”對應扇形的圓心角為 度;
(3)根據調査結果,請您估計該校2000名學生中最喜歡“數學史”校本課程的人數;
(4)小明和小亮參加校本課程學習,若每人從“A”、“B”、“C”三門校本課程中隨機選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,拋物線(
)與x軸相交于A,B兩點,與y軸相交于點C,頂點為D.
(1)當a=1時,拋物線頂點D的坐標為________,AB=_________;
(2)AB的長是否與a有關?說明你的理由;
(3)若將拋物線(
)沿y軸折疊,得到另一拋物線,其頂點為D,如圖②.連接CD,CD和DD.
①若△CDD為等邊三角形時,則a=______;
②若△CDD為等腰直角三角形時,則a=______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com