【題目】若二次函數y=|a|x2+bx+c的圖象經過A(m,n)、B(0,y1)、C(3-m,n)、D(, y2)、E(2,y3),則y1、y2、y3的大小關系是( ).
A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中學生騎電動車上學的現象越來越受到社會的關注.為此某媒體記者小李隨機調查了城區若干名中學生家長對這種現象的態度(態度分為:A:無所謂;B:反對;C:贊成)并將調査結果繪制成圖①和圖②的統計圖(不完整)請根據圖中提供的信息,解答下列問題:
(1)此次抽樣調査中.共調査了 名中學生家長;
(2)將圖①補充完整;
(3)根據抽樣調查結果.請你估計我市城區80000名中學生家長中有多少名家長持反對態度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】教室講臺上粉筆盒中有紅粉筆1支,黃粉筆1支,白粉筆2支,這些粉筆除顏色外其余都相同.
(1)小亮認為從粉筆盒中隨機拿一支,只有紅、黃、白三種可能,所以拿到紅粉筆的概率是,你同意小亮的看法嗎? (填“同意”或“不同意”);
(2)李老師在上課前,隨機中粉筆盒中拿出兩支粉筆,求他拿到都是白粉筆的概率,請用樹狀圖或列表法說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料
我們通過下列步驟估計方程2x2+x﹣2=0的根的所在的范圍.
第一步:畫出函數y=2x2+x﹣2的圖象,發現圖象是一條連續不斷的曲線,且與x軸的一個
交點的橫坐標在0,1之間.
第二步:因為當x=0時,y=﹣2<0;當x=1時,y=1>0.
所以可確定方程2x2+x﹣2=0的一個根x1所在的范圍是0<x1<1.
第三步:通過取0和1的平均數縮小x1所在的范圍;
取x=,因為當x=
時,y<0,
又因為當x=1時,y>0,
所以<x1<1.
(1)請仿照第二步,通過運算,驗證2x2+x﹣2=0的另一個根x2所在范圍是﹣2<x2<﹣1;
(2)在﹣2<x2<﹣1的基礎上,重復應用第三步中取平均數的方法,將x2所在范圍縮小至m<x2<n,使得n﹣m≤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD的四個角向內折疊鋪平,恰好拼成一個無縫隙無重疊的矩形EFGH,若EH=5,EF=12,則矩形ABCD的面積是( )
A. 13 B. C. 60 D. 120
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某社區決定把一塊長,寬
的矩形空地建成居民健身廣場,設計方案如圖,陰影區域為綠化區(四塊綠化區為大小、形狀都相同的矩形),空白區域為活動區,且四周的4個出口寬度相同,其寬度不小于
,不大于
,設綠化區較長邊為
,活動區的面積為
.為了想知道出口寬度的取值范圍,小明同學根據出口寬度不小于
,算出
.
(1)求與
的函數關系式并直接寫出自變量
的取值范圍;
(2)求活動區的最大面積;
(3)預計活動區造價為50元/,綠化區造價為40元/
,若社區的此項建造投資費用不得超過72000元,求投資費用最少時活動區的出口寬度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,E在AC上,經過A,B,E三點的圓O交BC于點D,且D點是弧BE的中點,
(1)求證AB是圓的直徑;
(2)若AB=8,∠C=60°,求陰影部分的面積;
(3)當∠A為銳角時,試說明∠A與∠CBE的關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com