【題目】在面積為12的平行四邊形ABCD中,過點A作直線BC的垂線交BC于點E,過點A作直線CD的垂線交CD于點F,若,則
的值為______.
【答案】或
【解析】分析:根據平行四邊形面積求出AE和AF,然后根據題意畫出圖形:有兩種情況,求出BE、DF的值,求出CE和CF的值,繼而求得出答案.
詳解:∵四邊形ABCD是平行四邊形, ∴AB=CD=4,BC=AD=6,
①如圖:
∵SABCD=BCAE=CDAF=12, ∴AE=2,AF=3,
在Rt△ABE中:BE=2,在Rt△ADF中,DF=3
, ∴CE+CF=BC-BE+DF-CD=2+
;
②如圖:
∵SABCD=BCAE=CDAF=12, ∴AE=2,AF=3,
在Rt△ABE中:BE=2,在Rt△ADF中,DF=3
, ∴CE+CF=BC+BE+DF+CD=10+5
,
綜上可得:CE+CF的值為10+5或2+
.
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是( )
A. 當AB=BC時,它是菱形 B. 當AC=BD時,它是正方形
C. 當∠ABC=90°時,它是矩形 D. 當AC⊥BD時,它是菱形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知多項式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).
(1)若多項式的值與字母x的取值無關,求a、b的值.
(2)在(1)的條件下,先化簡多項式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.
(3)在(1)的條件下,求(b+a2)+(2b+a2)+(3b+
a2)+…+(9b+
a2)的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點。
⑴該學習小組成員意外的發現圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖①和圖③中發現的結論選擇其一說明理由。
⑵試探究圖②中BN、CN、CM、DN這四條線段之間的數量關系,寫出你的結論,并說明理由。
⑶將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點繞O點旋轉到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數量關系(不需要證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】世界杯比賽中,根據場上攻守形勢,守門員會在門前來回跑動,如果以球門線為基準,向前跑記作正數,返回則記作負數,一段時間內,某守門員的跑動情況記錄如下(單位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定開始計時時,守門員正好在球門線上)
(1)守門員最后是否回到球門線上?
(2)守門員離開球門線的最遠距離達多少米?
(3)如果守門員離開球門線的距離超過10米(不包括10米),則對方球員挑射極可能造成破門.請問在這一時間段內,對方球員有幾次挑射破門的機會?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,∠A=30°,點P從點A出發以2cm/s的速度沿折線A—C—B運動,點Q從點A出發以a(cm/s)的速度沿AB運動,P,Q兩點同時出發,當某一點運動到點B時,兩點同時停止運動.設運動時間為x(s),△APQ的面積為y(cm2),y關于x的函數圖象由C1 , C2兩段組成,如圖2所示.
(1)求a的值;
(2)求圖2中圖象C2段的函數表達式;
(3)當點P運動到線段BC上某一段時△APQ的面積,大于當點P在線段AC上任意一點時△APQ的面積,求x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com