【題目】如圖,已知二次函數y=ax2+2x+c的圖象經過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.
(1)求二次函數y=ax2+2x+c的表達式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;
(3)當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.
【答案】(1)y=﹣x2+2x+3;(2)(,
);(3)當點P的坐標為(
,
)時,四邊形ACPB的最大面積值為
.
【解析】
(1)已知二次函數上兩點的坐標,利用待定系數法求解二次函數的解析式。
(2)根據菱形的對角線互相垂直且平分,可得P點的縱坐標,根據自變量與函數值的對應關系,可得P點坐標;
(3)根據平行于y軸的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得PQ的長,根據面積的和差,可得二次函數,根據二次函數的性質,可得答案.
解:(1)將點B和點C的坐標代入函數解析式,得
,
解得,
二次函數的解析是為y=﹣x2+2x+3;
(2)若四邊形POP′C為菱形,則點P在線段CO的垂直平分線上,
如圖1,連接PP′,則PE⊥CO,垂足為E,
∵C(0,3),
∴E(0,),
∴點P的縱坐標,
當y=時,即﹣x2+2x+3=
,
解得x1=,x2=
(不合題意,舍),
∴點P的坐標為(,
);
(3)如圖2,
P在拋物線上,設P(m,﹣m2+2m+3),
設直線BC的解析式為y=kx+b,
將點B和點C的坐標代入函數解析式,得
,
解得.
直線BC的解析為y=﹣x+3,
設點Q的坐標為(m,﹣m+3),
PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.
當y=0時,﹣x2+2x+3=0,
解得x1=﹣1,x2=3,
OA=1,
AB=3﹣(﹣1)=4,
S四邊形ABPC=S△ABC+S△PCQ+S△PBQ
=ABOC+
PQOF+
PQFB
=×4×3+
(﹣m2+3m)×3
=﹣(m﹣
)2+
,
當m=時,四邊形ABPC的面積最大.
當m=時,﹣m2+2m+3=
,即P點的坐標為(
,
).
當點P的坐標為(,
)時,四邊形ACPB的最大面積值為
.
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=x2+mx+n的圖象經過A(0,3),且對稱軸是直線x=2.
(1)求該函數的解析式;
(2)在拋物線上找一點P,使△PBC的面積是△ABC的面積的,求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=--x+8與x軸,y軸分別交于點A,點B,點D在y軸的負半軸上,若將△DAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處.
(1)求AB的長和點C的坐標;
(2)求直線CD的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:兩個二次項系數之和為1,對稱軸相同,且圖象與y軸交點也相同的二次函數互為友好同軸二次函數例如:
的友好同軸二次函數為
.
請你分別寫出
,
的友好同軸二次函數;
滿足什么條件的二次函數沒有友好同軸二次函數?滿足什么條件的二次函數的友好同軸二次函數是它本身?
如圖,二次函數
:
與其友好同軸二次函數
都與y軸交于點A,點B、C分別在
、
上,點B,C的橫坐標均為
,它們關于
的對稱軸的對稱點分別為
,
,連結
,
,
,CB.
若
,且四邊形
為正方形,求m的值;
若
,且四邊形
的鄰邊之比為1:2,直接寫出a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線L1:y=﹣x2+bx+c經過點A(1,0)和點B(5,0)已知直線l的解析式為y=kx﹣5.
(1)求拋物線L1的解析式、對稱軸和頂點坐標.
(2)若直線l將線段AB分成1:3兩部分,求k的值;
(3)當k=2時,直線與拋物線交于M、N兩點,點P是拋物線位于直線上方的一點,當△PMN面積最大時,求P點坐標,并求面積的最大值.
(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2
①直接寫出y隨x的增大而增大時x的取值范圍;
②直接寫出直線l與圖象L2有四個交點時k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】材料一:我們可以將任意三位數記為,(其中
、
、
分別表示該數的百位數字,十位數字和個位數字,且
),顯然
.
材料二:若一個三位數的百位數字,十位數字和個位數字均不為0,則稱之為初始數,比如123就是一個初始數,將初始數的三個數位上的數字交換順序,可產生出5個新的初始數,比如由123可以產生出132,213,231,312,321這5個新初始數,這6個初始數的和成為終止數.
(1)求初始數125生成的終止數;
(2)若一個初始數,滿足
,且
,記
,
,
,若
,求滿足條件的初始數的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2020年是全面建成小康社會收官之年,某扶貧幫扶小組積極響應,對農民實施精準扶貧.某農戶老張家種植花椒和黑木耳兩種干貨共800千克,扶貧小組通過市場調研發現,花椒市場價60元/千克,黑木耳市場價48元/千克,老張全部售完可以收入4.2萬元.已知老張種植花椒成本需25元/千克,種植木耳成本需35元/千克,根據脫貧目標任務要求,老張種植花椒和黑木耳的兩種干貨的純收入(銷售收入-種植成本)在2萬元以上才可以順利脫貧.請你分析一下扶貧幫扶小組是否能幫助老張順利脫貧.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,長方形的頂點
的坐標分別為
,
,
是
的中點,動點
從
點出發,以每秒
個單位長度的速度,沿著
運動,設點
運動的時間為
秒(
).
(1)點的坐標是______;
(2)當點在
上運動時,點
的坐標是______(用
表示);
(3)求的面積
與
之間的函數表達式,并寫出對應自變量
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com