【題目】如圖,在平面直角坐標系xOy中,⊙O交x軸于A、B兩點,直線FA⊥x軸于點A,點D在FA上,且DO平行于⊙O的弦MB,連接DM并延長交x軸于點C.
(1)判斷直線DC與⊙O的位置關系,并給出證明;
(2)設點D的坐標為(-2,4),試求經過D、O、C三點的拋物線的解析式.
(3)若坐標平面內的點P,使得以點P和三點D、O、C為頂點的四邊形是平行四邊形,求P點的坐標.
【答案】(1)見解析;(2)y=x2-
x;(3)P1(-
,4),P2(
,4),P3(
,-4)
【解析】
(1)連接OM,根據DO∥MB即可證得△AOD≌△MOD,從而得出∠OMD=∠OAD,因為DA⊥OA,即可得OM⊥CD;
(2) 設MC=x,可證得△OMC∽△DAC,利用相似三角形的性質得出OC=2x-2,利用勾股定理即可列出方程即可求解;
(3)要使以點P和三點D、O、C為頂點的四邊形是平行四邊形,則分三種情況討論:①當DP∥OC,DC為對角線時,②當PD∥OC,DO為對角線時,③當DC∥OP,OC為對角線時,根據每種情況求解即可.
(1) 直線DC與⊙O相切.證明如下:
如圖,連接OM,則OM=OB,
∴∠OMB=∠OBM.
∵DO∥MB,
∴∠AOD=∠OBM, ∠MOD=∠OMB,
∴∠AOD=∠MOD.
又∵OA=OM,OD=OD,
∴△AOD≌△MOD,
∴∠OMD=∠OAD.
而DA⊥OA,
∴∠OAD=90°,
∴∠OMD=90°,即OM⊥CD,
∴直線DC與⊙O相切.
(2)設MC=x.
∵∠OMC=∠DAC=90°,∠OCM=∠DCA,
∴△OMC∽△DAC,
∴=
.
∵OM=OA=2,DA=4,AC=OA+OC=2+OC,
∴=
,
∴OC=2x-2.
在Rt△OMC中,
∵OM2+MC2=OC2,
∴22+x2=(2x-2)2,
解得x1=,x2=0(舍去),
∴OC=2×-2=
,
∴C(,0).
因為拋物線經過坐標原點O,所以c=0,可設拋物線的解析式為y=ax2+bx,將(-2,,0)代入,得
解之,得
.
∴y=x2-
x.
(3)①當DP∥OC,DC為對角線時
∵D (-2,4),C(,0),
∴AO=OB=2,OC=
∴P1(,4)
②當PD∥OC,DO為對角線時
∵DP2=OC=
∴P2(-,4)
③當DC∥OP,OC為對角線時
同理可得P3(,-4).
故P點坐標為:P1(,4),P2(-
,4),P3(
,-4)
科目:初中數學 來源: 題型:
【題目】如圖,在中,∠A=90°,AB=12cm,AC=6cm,點P沿AB邊從點A開始向點B以每秒2cm的速度移動,點Q沿CA邊從點C開始向點A以每秒1cm的速度移動,P、Q同時出發,用t表示移動的時間.
(1)當t為何值時,△QAP為等腰直角三角形?
(2)當t為何值時,以點Q、A、P為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸交于
兩點,與
軸交于點
,且
.直線
與拋物線交于
兩點,與
軸交于點
,點
是拋物線的頂點,設直線
上方的拋物線上的動點
的橫坐標為
.
(1)求該拋物線的解析式及頂點的坐標.
(2)連接,直接寫出線段
與線段
的數量關系和位置關系.
(3)連接,當
為何值時
?
(4)在直線上是否存在一點
,使
為等腰直角三角形?若存在,請直接寫出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以A為圓心,AB長為半徑畫弧交AD于點F;再分別以B、F為圓心,大于的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則四邊形ABEF是菱形.
(1)求證:四邊形ABEF是菱形;
(2)若菱形ABEF的周長為8,,求∠C的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】經過某十字路口的汽車,它可能繼續直行,也可能向左轉或向右轉,如果這三種可能性大小相同,現有兩輛汽車經過這個十字路口.
(1)試用樹狀圖或列表法中的一種列舉出這兩中的一種列舉出這輛汽車行駛方向所有可能的結果;
(2)求至少有一輛汽車向左轉的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近日,深圳市人民政府發布了《深圳市可持續發展規劃》,提出了要做可持續發展的全球創新城市的目標,某初中學校了解學生的創新意識,組織了全校學生參加創新能力大賽,從中抽取了部分學生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統計后得到如圖所示的頻數分布直方圖(每組含最小值不含最大值)和扇形統計圖.
(1)抽取學生的總人數是 人,扇形C的圓心角是 °;
(2)補全頻數直方圖;
(3)該校共有2200名學生,若成績在70分以下(不含70分)的學生創新意識不強,有待進一步培養,則該校創新意識不強的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】工人師傅童威準備在一塊長為60,寬為48的長方形花圃內修建四條寬度相等,且與各邊垂直的小路.四條小路圍成的中間部分恰好是一個正方形,且邊長是小路寬度的8倍.若四條小路所占面積為160.設小路的寬度為x,依題意列方程,化為一般形式為_________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是我國東漢初年編訂的一部數學經典著作在它的“方程”一章里,一次方程組是由算籌布置而成的《九章算術》中的算籌圖是豎排的,現在我們把它改為橫排,如圖1、圖2圖中各行從左到右列出的算籌數分別表示未知數的系數與相應的常數項把圖1所示的算籌圖用我們現在所熟悉的方程組形式表述出來,就是
類似地,圖2所示的算籌圖我們可以表述為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為鼓勵大學畢業生自主創業,某市政府出臺了相關政策:由政府協調,本市企業按成本價提供產品給大學畢業生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節能燈.已知這種節能燈的成本價為每件元,出廠價為每件
元,每月銷售量
(件)與銷售單價
(元)之間的關系近似滿足一次函數:
.
(1)李明在開始創業的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?
(2)設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規定,這種節能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于
元,那么政府為他承擔的總差價最少為多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com