【題目】如圖,在邊長為4的正方形ABCD中,E為AD的中點,F為BC邊上一動點,設BF=t(0≤t≤2),線段EF的垂直平分線GH分別交邊CD,AB于點G,H,過E做EM⊥BC于點M,過G作GN⊥AB于點N.
(1)當t≠2時,求證:△EMF≌△GNH;
(2)順次連接E、H、F、G,設四邊形EHFG的面積為S,求出S與自變量t之間的函數關系式,并求S的最小值.
科目:初中數學 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分別是BC、CD上的點,且∠EAF=60°.探究圖中線段BE,EF,FD之間的數量關系.
(1)小明同學探究此問題的方法是,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是;
(2)探索延伸:
如圖②,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點,且∠EAF= ∠BAD,上述結論是否仍然成立,請說明理由;
(3)實際應用:
如圖③,在某次軍事演習中,艦艇甲在指揮中心O北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進,2小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,當∠EOF=70°時,兩艦艇之間的距離是海里.
(4)能力提高:
如圖④,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,則MN的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以△ABC 的邊 AB,AC 向外作等邊三角形 ABD 和等邊三角形 ACE,線段 BE 與 CD 相交于點 O,連接 OA.
(1)求證:BE=DC;
(2)求∠BOD 的度數;
(3)求證:OA 平分∠DOE.
(4)猜想線段 OA、OB、OD 的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連結DE.
(1)當∠BAD=60°,求∠CDE的度數;
(2)當點D在BC(點B、C除外)邊上運動時,試寫出∠BAD與∠CDE的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把一根筷子一端放在水里,一端露出水面,筷子變彎了,它真的彎了嗎?其實沒有,這是光的折射現象,光從空氣中射入水中,光的傳播方向發生了改變,圖中與∠1是同位角的有____________,與∠2是內錯角的有________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊三角形ABC中,點F是線段AC上一點,點E是線段BC上一點,BF與AE交于點H,∠BAE=∠FBC,AG⊥BF,∠GAF:∠BEA=1:10,則∠BAE=_____°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數是購買手電筒個數的一半.
(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?
(2)經商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優惠,如果榮慶公司需要手電筒的個數是臺燈個數的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某探測隊在地面A、B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結果精確到1米.參考數據:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com