【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.
求證:∠C=∠D.
證明:因為∠1=∠2(已知),∠1=∠3( )
得∠2=∠3( )
所以AE//_______( )
得∠4=∠F( )
因為__________(已知)
得∠4=∠A
所以______//_______( )
所以∠C=∠D( )
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動點P從點C出發,沿CA方向運動,速度是2cm/s,動點Q從點B出發,沿BC方向運動,速度是1cm/s.
(1)幾秒后P,Q兩點相距25cm?
(2)幾秒后△PCQ與△ABC相似?
(3)設△CPQ的面積為S1 , △ABC的面積為S2 , 在運動過程中是否存在某一時刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1) 如圖1,在正方形ABCD中,點E,F分別在邊BC,CD上,AE,BF交于點O,∠AOF=90°.求證:BE=CF.
(2) 如圖2,在正方形ABCD中,點E,H,F,G分別在邊AB,BC,CD,DA上,EF,GH交于點O,∠FOH=90°, EF=4.求GH的長.
(3) 已知點E,H,F,G分別在矩形ABCD的邊AB,BC,CD,DA上,EF,GH交于點O,∠FOH=90°,EF=4. 直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個全等的正方形組成,求GH的長;
②如圖4,矩形ABCD由n個全等的正方形組成,求GH的長(用n的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c(c>0)與y軸交于點C,頂點為A,拋物線的對稱軸交x軸于點E,交BC于點D,tan∠AOE= .直線OA與拋物線的另一個交點為B.當OC=2AD時,c的值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線.
(2)過點B作⊙O的切線交CD的延長線于點E,若OB=5,BC=18,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,BC=12,∠B=30°,AB的垂直平分線DE交BC邊于點E,AC的垂直平分線MN交BC于點N.
(1)求△AEN的周長;
(2)求證:BE=EN=NC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用紙在某謄印社復印文件,復印頁數不超過
時每頁收費
元;復印頁數超過
時,超過部分每頁收費
元.在某圖書館復印同樣的文件,不論復印多少頁,每頁收費
元,如何根據復印的頁數選擇復印的地點使總價格比較便宜?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知數軸上點A表示的數為-7,點B表示的數為5,點C到點A,點B的距離相等,動點P從點A出發,以每秒2個單位長度的速度沿數軸向右勻速運動,設運動的時間為(
>0)秒
(1)點C表示的數是_________.
(2)求當等于多少秒時,點P到達點B處.
(3)點P表示的數是_________(用含有的代數式表示).
(4)求當t等于多少秒時,PC之間的距離為2個單位長度(只列式,不計算).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com