【題目】如圖,在△ABC中,∠C=45°,AB的垂直平分線交AB于點E,交BC于點D;AC的垂直平分線交AC于點G,交BC與點F,連接AD、AF,若AC=3 ,BC=9,則DF等于( )
A.
B.
C.4
D.3
【答案】A
【解析】解:∵AB的垂直平分線交AB于點E,交BC于點D;AC的垂直平分線交AC于點G,交BC與點F,AC=3 ,
∴BD=AD,AF=CF,
∵∠C=45°
∴∠C=∠CAF=45°,
∴∠AFC=∠AFD=90°,
在Rt△AFC中,AF=CF=3 ×sin30°=3,
∵BC=9,
∴BF=9﹣3=6,
設DF=x,則BD=AD=6﹣x,
在Rt△ADF中,由勾股定理得:(6﹣x)2=x2+32 ,
解得:x= ,
即DF= ,
故選A.
【考點精析】解答此題的關鍵在于理解線段垂直平分線的性質的相關知識,掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2﹣2x﹣3,點P在該函數的圖象上,點P到x軸、y軸的距離分別為d1、d2 . 設d=d1+d2 , 下列結論中:
①d沒有最大值;
②d沒有最小值;
③﹣1<x<3時,d隨x的增大而增大;
④滿足d=5的點P有四個.
其中正確結論的個數有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為美化校園,計劃對面積為1800m2的區域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學校每天需付給甲隊的綠化費用為0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x= ,且經過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2 . 上述說法正確的是( )
A.①②④
B.③④
C.①③④
D.①②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知雙曲線y= ,經過點D(6,1),點C是雙曲線第三象限上的動點,過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A、B,連接AB,BC.
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司銷售A,B兩種產品,根據市場調研,確定兩條信息:
信息1:銷售A種產品所獲利潤y:(萬元)與銷售產品x(噸)之間存在二次函數關系,如圖所示:
信息2:銷售B種產品所獲利潤y(萬元)與銷售產品x(噸)之間存在正比例函數關系y2=0.3x.
根據以上信息,解答下列問題;
(1)求二次函數解析式;
(2)該公司準備購進A、B兩種產品共10噸,求銷售A、B兩種產品獲得的利潤之和最大是多少萬元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解答題
(1)如圖1,在△ABC中,AD是中線,分別過點B、C作AD及其延長線的垂線BE、CF,垂足分別為點E、F.求證:BE=CF.
(2)如圖2,在△ABC中,AB=2,AC=1,以AB為直徑的圓與AC相切,與邊BC交于點D,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F,點P是⊙A上的一點,且∠EPF=45°,則圖中陰影部分的面積為( )
A.4﹣π
B.4﹣2π
C.8+π
D.8﹣2π
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com