分析 (1)過E作EF∥BC交AC于F,求出等邊三角形AEF,證△DEB和△ECF全等,求出BD=EF即可;
(2)過C作CH∥AB交AG的延長線于H,根據平行線的性質得到∠EAG=∠H,∠ABC=∠BCH=60°,推出△AEG≌△CGH,根據全等三角形的性質得到AE=CH,AG=GH=1.5,由(1)知BD=AE,證得△ABD≌△ACH,根據全等三角形的性質即可得到結論.
解答 (1)證明:如圖1,過點E作EF∥BC交AC于點F,如圖1所示:
∴∠AEF=∠ABC,∠AFE=∠ACB,
∵△ABC是等邊三角形,
∴∠ABC=∠ACB=∠BAC=60°,AB=AC=BC,
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,
即∠AEF=∠AFE=∠EAF=60°,
∴△AEF是等邊三角形,
∴∠DBE=∠EFC=120°,∠EDB+∠BED=∠FCE+∠ECD=60°,
∵DE=EC,
∴∠EDB=∠ECD,
∴∠BED=∠ECF,
在△DEB和△ECF中,$\left\{\begin{array}{l}{∠DEB=∠ECF}\\{∠DBE=∠EFC}\\{DE=EC}\end{array}\right.$,
∴△DEB≌△ECF(AAS),
∴DB=EF,
∴AE=BD;
(2)如圖2,過C作CH∥AB交AG的延長線于H,
∴∠EAG=∠H,∠ABC=∠BCH=60°,
在△AEG與△HCG中,$\left\{\begin{array}{l}{∠EAG=∠H}\\{∠AGE=∠CGH}\\{EG=CG}\end{array}\right.$,
∴△AEG≌△CGH,
∴AE=CH,AG=GH=1.5,
由(1)知BD=AE,
∴BD=CH,
∵∠ABD=∠ACH=120°,
在△ADB與△AHC中,$\left\{\begin{array}{l}{AB=AC}\\{∠ABD=∠ACH}\\{BD=CH}\end{array}\right.$,
∴△ABD≌△ACH,
∴AD=AH=2AG=3.
點評 本題考查了全等三角形的判定和性質,等邊三角形的性質,平行線的性質,正確的作出輔助線是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | y=-3(x-1)2-3 | B. | y=-3(x-1)2-1 | C. | y=-3(x=1)2-3 | D. | y=-3(x+1)2-1 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com