精英家教網 > 初中數學 > 題目詳情

如圖,大樓AB、CD和大樹EF的底端B、D、F在同一直線上,BF=FD=10米,AB=16米,某人在樓頂A處測得點C的仰角為22°,測得點E的俯角為45°.(參考數據:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)

(1)求大樹EF的高度;
(2)求大樓CD的高度.

(1)6米;(2)24米

解析試題分析:(1)作AH⊥CD,垂足為H,作EG⊥AB,垂足為G,先根據等腰直角三角形的性質求得AG=GE=10,即可求得結果;
(2)在Rt△ACH中,根據∠CAH的正切函數即可求得CH的長,從而求得結果.
(1)作AH⊥CD,垂足為H,作EG⊥AB,垂足為G

由題意知,EG=10,∠EAG=45°,∠AGE=90°,
∴AG=GE=10.
∴EF=GB=AB-AG=16-10=6(米);
(2)在Rt△ACH中,∠CAH=22°,
CH=AH·tan22°=20×0.40=8(米).
∴CD=CH+HD=16+8=24(米)
答:大樹EF的高度是6米,大樓CD的高度是24米.
考點:解直角三角形的應用
點評:解直角三角形的應用是中考必考題,一般難度不大,正確作出輔助線構造直角三角形是解題關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•遼陽)如圖,大樓AB高16米,遠處有一塔CD,某人在樓底B處測得塔頂的仰角為38.5°,爬到樓頂A處測得塔頂的仰角為22°,求塔高CD及大樓與塔之間的距離BD的長.(參考數據:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80 )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,大樓AB的高為16米,遠處有一塔CD,小明在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°.其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求:
(1)塔CD的高度;
(2)若將題目中的數據16米、60°、45°分別改為m米、∠α、∠β(α>β),請用含m、α、β的式子表示塔CD的高度.

查看答案和解析>>

科目:初中數學 來源:2012-2013學年江蘇省南京市鼓樓區中考二模數學試卷(解析版) 題型:解答題

如圖,大樓AB、CD和大樹EF的底端B、D、F在同一直線上,BF=FD=10米,AB=16米,某人在樓頂A處測得點C的仰角為22°,測得點E的俯角為45°.(參考數據:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)

(1)求大樹EF的高度;

(2)求大樓CD的高度.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视