【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.
(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2,為什么?
(3)怎樣圍才能使圍出的矩形場地面積最大?最大面積為多少?請通過計算說明.
【答案】(1)當所圍矩形的長為30m、寬為25m時,能使矩形的面積為750m2;(2)不能使所圍矩形場地的面積為810m2;理由見解析;(3)當所圍矩形的長為40m、寬為20m時,能使矩形的面積最大,最大面積為800 m2.
【解析】
(1)設所圍矩形ABCD的長AB為x米,則寬AD為 (80x)米,根據矩形的面積公式建立方程求出解即可;
(2)根據矩形的面積公式建立方程,根據根的判別式得出方程無實數解,從而得出結論;
(3)設矩形的面積為S,由矩形的面積公式可以得出S與x的關系,由關系式的性質就可以得出結論.
(1)設所圍矩形ABCD的長AB為x米,則寬AD為 (80﹣x)米,
由題意,得x(80﹣x)=750,
解得:x1=50,x2=30,
∵墻的長度不超過45m,
∴x=30,
∴(80﹣x)=25,
答:當所圍矩形的長為30m、寬為25m時,能使矩形場地的面積為750m2;
(2)不能.
理由:由x(80﹣x)=810,整理得:x2﹣80x+1620=0.
∵△=b2﹣4ac=(﹣80)2﹣4×1×1620=﹣80<0,
∴方程沒有實數根.
因此不能使所圍矩形場地的面積為810m2;
(3)設矩形的面積為S,所圍矩形ABCD的長AB為x米,
由題意,得S=x(80﹣x)=﹣
(x﹣40)2+800,
∴當x=40時,S最大=800,且符合題意,
∴(80﹣x)=20,
答:當所圍矩形的長為40m、寬為20m時,能使矩形的面積最大,最大面積為800 m2.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點。
(1)求b、c的值;
(2)P為拋物線上的點,且滿足S△PAB=8,求P點的坐標
(3)設拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最小?若存在,求出Q點的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形木框ABCD中,AB=2AD=4,將其按順時針變形為ABC′D′,當∠AD′B=90°時,四邊形對稱中心O經過的路徑長為( 。
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線C1:y=﹣x2+2x.
(1)補全表格:
拋物線 | 頂點坐標 | 與x軸交點坐標 | 與y軸交點坐標 | |
y=﹣x2+2x | (1,1) |
|
| (0,0) |
(2)將拋物線C1向上平移3個單位得到拋物線C2,請畫出拋物線C1,C2,并直接回答:拋物線C2與x軸的兩交點之間的距離是拋物線C1與x軸的兩交點之間距離的多少倍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)先化簡,再求值:其中,a是方程x2+3x+1=0的根.
(2)已知拋物線y=ax2+bx+c的對稱軸為x=2,且經過點(1,4)和(5,0),試求該拋物線的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=mx2﹣4mx+2m+1與x軸交于A(x1,0),B(x2,0)兩點,與y軸交于點C,且x2﹣x1=2.
(1)求拋物線的解析式;
(2)E是拋物線上一點,∠EAB=2∠OCA,求點E的坐標;
(3)設拋物線的頂點為D,動點P從點B出發,沿拋物線向上運動,連接PD,過點P做PQ⊥PD,交拋物線的對稱軸于點Q,以QD為對角線作矩形PQMD,當點P運動至點(5,t)時,求線段DM掃過的圖形面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=x+2與x軸交于A、B兩點,交y軸于點C.
(1)判斷△ABC的形狀,并說明理由.
(2)在拋物線對稱軸上是否存在一點P,使得以A、C、P為頂點的三角形是等腰三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC,將△ABC繞點A順時針方向旋轉60°到△AB'C'的位置,連接C′B,C′B=﹣1,則AC=_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com