精英家教網 > 初中數學 > 題目詳情

【題目】從1名男生和3名女生中隨機抽取參加“我愛鹽城”演講比賽的同學.
(1)若抽取1名,恰好是男生的概率為;
(2)若抽取2名,求恰好是2名女生的概率.(用樹狀圖或列表法求解)

【答案】
(1)
(2)解:畫樹狀圖得:

∵共有12種等可能的結果,恰好是2名女生的有6種情況,

∴恰好是2名女生的概率為: =


【解析】解:(1)∵1名男生和3名女生中隨機抽取參加“我愛蘇州”演講比賽, ∴抽取1名,恰好是男生的概率為: ;
所以答案是: ;
【考點精析】關于本題考查的列表法與樹狀圖法和概率公式,需要了解當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結果,并且它們發生的可能性都相等,事件A包含其中的m中結果,那么事件A發生的概率為P(A)=m/n才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某商場購進一種單價為40元的書包,如果以單價50元出售,那么每月可售出30個,根據銷售經驗,售價每提高5元,銷售量相應減少1個.
(1)請寫出銷售單價提高x元與總的銷售利潤y元之間的函數關系式;
(2)如果你是經理,為使每月的銷售利潤最大,那么你確定這種書包的單價為多少元?此時,最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人進行摸牌游戲.現有三張形狀大小完全相同的牌,正面分別標有數字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.甲從中隨機抽取一張牌,記錄數字后放回洗勻,乙再隨機抽取一張.
(1)請用列表法或畫樹狀圖的方法,求兩人抽取相同數字的概率;
(2)若兩人抽取的數字和為2的倍數,則甲獲勝;若抽取的數字和為5的倍數,則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明家客廳里裝有一種三位單極開關,分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小明按下任意一個開關均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.
(1)若小明任意按下一個開關,則下列說法正確的是(
A.小明打開的一定是樓梯燈;
B.小明打開的可能是臥室燈;
C.小明打開的不可能是客廳燈;
D.小明打開走廊燈的概率是
(2)若任意按下一個開關后,再按下另兩個開關中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖法或列表法加以說明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于二次函數y=x2﹣3x+2和一次函數y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)稱為這兩個函數的“再生二次函數”,其中t是不為零的實數,其圖像記作拋物線E,現有點A(2,0)和拋物線E上的點B(﹣1,n),請完成下列任務;
(1)【嘗試】①當t=2時,拋物線y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的頂點坐標為
(2)②判斷點A是否在拋物線E上;
(3)③求n的值.
(4)【發現】通過(2)和(3)的演算可知,對于t取任何不為零的實數,拋物線E總過定點,坐標為
(5)【應用】
①二次函數y=﹣3x2+5x+2是二次函數y=x2﹣3x+3和一次函數y=﹣2x+4的一個“再生二次函數”嗎?如果是,求出t的值;如果不是,說明理由;
②以AB為邊作矩形ABCD,使得其中一個頂點落在y軸上;若拋物線E經過A,B,C,D其中的三點,求出所有符合條件的t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】今年以來,國務院連續發布了《關于加快構建大眾創業萬眾創新支撐平臺的指導意見》等一系列支持性政策,各地政府高度重視、積極響應,中國掀起了大眾創業萬眾創新的新浪潮.某創新公司生產營銷A、B兩種新產品,根據市場調研,發現如下信息: 信息1:銷售A種產品所獲利潤y(萬元)與所售產品x(噸)之間存在二次函數關系y=ax2+bx,當x=1時,y=7;當x=2時,y=12.
信息2:銷售B種產品所獲利潤y(萬元)與所售產品x(噸)之間存在正比例函數關系y=2x.
根據以上信息,解答下列問題:
(1)求a,b的值;
(2)該公司準備生產營銷A、B兩種產品共10噸,請設計一個生產方案,使銷售A、B兩種產品獲得的利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算: +( 1﹣2cos60°+(2﹣π)0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2 x+2與x軸交于A、B兩點,與y軸交于點C

(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為(
A.3:4
B.9:16
C.4:9
D.1:3

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视