精英家教網 > 初中數學 > 題目詳情

【題目】已知:x1 , x2是一元二次方程x2+2ax+b=0的兩根,且x1+x2=3,x1x2=1,則a、b的值分別是(
A.a=﹣3,b=1
B.a=3,b=1
C. ,b=﹣1
D. ,b=1

【答案】D
【解析】解:∵x1 , x2是一元二次方程x2+2ax+b=0的兩根, ∴x1+x2=﹣2a,x1x2=b,
∵x1+x2=3,x1x2=1,
∴﹣2a=3,b=1,
即a=﹣ ,b=1,
故選D.
【考點精析】解答此題的關鍵在于理解根與系數的關系的相關知識,掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a、b、c而定;兩根之和等于方程的一次項系數除以二次項系數所得的商的相反數;兩根之積等于常數項除以二次項系數所得的商.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】一艘漁船位于港口A的北偏東60°方向,距離港口20海里B處,它沿北偏西37°方向航行至C處突然出現故障,在C處等待救援,B,C之間的距離為10海里,救援船從港口A出發20分鐘到達C處,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8, ≈1.732,結果取整數)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖示,若△ABC內一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點(Brocard point)是法國數學家和數學教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發現,但他的發現并未被當時的人們所注意,1875年,布洛卡點被一個數學愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發現,并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=(
A.5
B.4
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內接四邊形,若∠BOD=88°,則∠BCD的度數是(
A.88°
B.92°
C.106°
D.136°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數y=kx+b的圖象和反比例函數y= 的圖象的兩個交點.
(1)求反比例函數和一次函數的解析式;
(2)求△AOB的面積;
(3)根據圖象直接寫出不等式kx+b< 時x的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=12cm,點P從點A開始,沿AB邊以1cm/s的速度向點B運動:點Q從點B開始,沿BC邊以2cm/s的速度向點C運動,當點P運動到點B時,運動停止,如果P,Q分別從A,B兩點同時出發.
(1)幾秒后△PBQ的面積等于8cm2?
(2)幾秒后以P,B,Q為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線MN與⊙O相切于點M,ME=EF且EF∥MN,則cos∠E=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P,Q是反比例函數y= 圖象上的兩點,PA⊥y軸于點A,QN⊥x軸于點N,作PM⊥x軸于點M,QB⊥y軸于點B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,E,F分別是AC,BC邊上一點.
(1)求證: ;
(2)若CE= AC,BF= BC,求∠EDF的度數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视