【題目】點 O 是直線 AB上一點,∠COD 是直角,OE平分∠BOC.
(1)①如圖1,若∠DOE=25°,求∠AOC 的度數;
②如圖2,若∠DOE=α,直接寫出∠AOC的度數(用含α的式子表示);
(2)將圖 1中的∠COD 繞點O按順時針方向旋轉至圖 2 所示位置.探究∠DOE 與∠AOC 的度數之間的關系,寫出你的結論,并說明理由.
【答案】(1)①∠AOC=50°;②∠AOC=2α;(2)∠DOE=∠AOC,理由詳見解析.
【解析】
(1)①首先求得∠COE的度數,然后根據角平分線的定義求得∠COB的度數,再根據∠AOC=180°﹣∠BOC即可求解;
②解法與①相同,把①中的25°改成α即可;
(2)把∠AOC的度數作為已知量,求得∠BOC的度數,然后根據角的平分線的定義求得∠COE的度數,再根據∠DOE=∠COD﹣∠COE求得∠DOE,即可解決.
(1)①∵∠COD=90°,∠DOE=25°,
∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,
又∵OE平分∠BOC,
∴∠BOC=2∠COE=130°,
∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;
②∵∠COD=90°,∠DOE=α,
∴∠COE=∠COD﹣∠DOE=90°﹣α,
又∵OE平分∠BOC,
∴∠BOC=2∠COE=180°﹣2α,
∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;
(2)∠DOE=∠AOC,理由如下:
∵∠BOC=180°﹣∠AOC,
又∵OE平分∠BOC
∴∠COE=∠BOC=
(180°﹣∠AOC)=90°﹣
∠AOC,
又∵∠COD=90°,
∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=
∠AOC.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,AD⊥CD,(點D在⊙O外)AC平分∠BAD.
(1)求證:CD是⊙O的切線;
(2)若DC、AB的延長線相交于點E,且DE=12,AD=9,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、B、C、D、E在同一直線上,且AC=BD,E是線段BC的中點.
(1)點E是線段AD的中點嗎?說明理由;
(2)當AD=10,AB=3時,求線段BE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別是BC、CD上的點,且CE=CF,點P、Q分別是AF、EF的中點,連接PD、PQ、DQ,則△PQD的形狀是( 。
A. 等腰三角形 B. 直角三角形
C. 等腰非直角三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廣告公司招標了一批燈箱加工工程,需要在規定時間內加工1400個燈箱,該公司按一定速度加工5天后,發現按此速度加工下去會延期10天完工,于是又抽調了一批工人投入燈箱加工,使工作效率提高了50%,結果如期完成工作.
(1)求該公司前5天每天加多少個燈箱;
(2)求規定時間是多少天.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論: ①4a﹣b<0;
②abc<0;
③a+b+c<0;
④a﹣b+c>0;
⑤4a+2b+c>0.
其中錯誤的個數有( 。
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com