【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論: ①4a﹣b<0;
②abc<0;
③a+b+c<0;
④a﹣b+c>0;
⑤4a+2b+c>0.
其中錯誤的個數有( )
A.1個
B.2個
C.3個
D.4個
【答案】B
【解析】解:①∵由函數圖象開口向下可知,a<0,由函數的對稱軸x=﹣ >﹣2可得b>4a,故4a﹣b<0,所以①正確; ②∵a<0,對稱軸在y軸負半軸,則a,b同號,即b<0,圖象與y軸交于負半軸,則c<0,故abc<0;所以②正確;
③當x=1時,y=a+b+c<0,所以③正確;
④當x=﹣1時,y=a﹣b+c<0,所以④錯誤;
⑤當x=2時,y=4a+2b+c<0,所以⑤錯誤;
故錯誤的有2個.
故選:B.
【考點精析】掌握二次函數圖象以及系數a、b、c的關系是解答本題的根本,需要知道二次函數y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).
科目:初中數學 來源: 題型:
【題目】點 O 是直線 AB上一點,∠COD 是直角,OE平分∠BOC.
(1)①如圖1,若∠DOE=25°,求∠AOC 的度數;
②如圖2,若∠DOE=α,直接寫出∠AOC的度數(用含α的式子表示);
(2)將圖 1中的∠COD 繞點O按順時針方向旋轉至圖 2 所示位置.探究∠DOE 與∠AOC 的度數之間的關系,寫出你的結論,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在日歷上,我們可以發現其中某些數滿足一定的規律,如圖是2017年12月份的日歷.如圖所選擇的兩組四個數,分別將每組數中相對的兩數相乘,再相減,例如:7×9﹣1×15= ,18×20﹣12×26= ,不難發現,結果都是 .
(1)請將上面三個空補充完整;
(2)我們發現選擇其他類似的部分規律也相同,請你利用整式的運算對以上的規律加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,∠BAC的平分線AD交⊙O于點D,過點D垂直于AC的直線交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)如圖AD=5,AE=4,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(3,﹣3),點B的坐標為(﹣1,3),回答下列問題
(1)點C的坐標是 .
(2)點B關于原點的對稱點的坐標是 .
(3)△ABC的面積為 .
(4)畫出△ABC關于x軸對稱的△A′B′C′.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先閱讀所給材料再完成后面的問題:
如圖①所示,AB∥CD,試說明∠B+∠D=∠BED.
解:過點E作EF∥CD,易知EF∥AB,所以∠DEF=∠D,∠FEB=∠B,所以∠BED=∠FEB+∠DEF=∠B+∠D.若圖中點E的位置發生變化,如圖②③④所示,則上面問題中的三個角(均小于180°)有何數量關系?寫出結論,并選擇圖②說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請根據圖中提供的信息,回答下列問題
(1)一個暖瓶與一個水杯分別是多少元?
(2)甲、乙兩家商場同時出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規定: 這兩種商品都打九折;乙商場規定:買一個暖瓶贈送一個水杯。若某單位想要買4個暖瓶和15個水杯,請問選擇哪家商場購買更合算,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知:DG⊥BC,AC⊥BC,FE⊥AB,∠1=∠2.
求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直的定義)
∴DG∥AC( )
∴∠2=∠DCA( )
∵∠1=∠2(已知)
∴∠1= (等量代換)
∴ (同位角相等,兩直線平行)
∴ =∠ADC( )
∵EF⊥AB(已知), ∴∠AEF=90°( ),∴∠ADC=90° ,
∴CD⊥AB(垂直的定義)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com