【題目】如圖,四邊形ABCD中,點M、N分別在AB、BC上,將BMN沿MN翻折,得FMN,若MF∥AD,FN∥DC,則∠D的度數為_________
【答案】90
【解析】首先利用平行線的性質得出∠BNF=100°,∠FNB=70°,再利用翻折變換的性質得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,進而求出∠B的度數以及得出∠D度數.
解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,
∴∠BMF=100°,∠FNB=70°,
∵將△BMN沿MN翻折,得△FMN,
∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,
∴∠F=∠B=180°-50°-35°=95°
∴∠D=360°-100°-70°-90°=95°.
“點睛”此題主要考查了平行線的性質以及多邊形內角和定理以及翻折變換的性質,得出∠FMN=∠BMN,∠FNM=∠MNB是解題關鍵.
科目:初中數學 來源: 題型:
【題目】下列分解因式正確的是( 。
A. m4﹣8m2+64=(m2﹣8)2
B. x4﹣y4=(x2+y2)(x2﹣y2)
C. 4a2﹣4a+1=(2a﹣1)2
D. a(x﹣y)﹣b(y﹣x)=(x﹣y)(a﹣b)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=120,BC=6cm,AB的垂直平分線交BC于點M,交AB于點E,AC的垂直平分線交BC于點N,交AC于點F,則MN的長為( )
A. 1.5cm B. 2cm C. 2.5cm D. 3cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸相交于點A、B,且過點C(4,3).
(1)求的值和該拋物線頂點P的坐標;
(2)將該拋物線向左平移,記平移后拋物線的頂點為P′,當四邊形AP′PB為平行四邊形時,求平移后拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,筆直的公路上A、B兩點相距25km,C、D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15km,CB=10km,現在要在公路的AB段上建一個土特產品收購站E,使得C、D兩村到收購站E的距離相等,則收購站E應建在離A點多遠處?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com