【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,點P沿AB邊從點A開始以2cm/s的速度向點B運動,點Q沿CB邊從點C開始以1cm/s的速度向點B運動,P、Q同時出發,用t(s)表示運動的時間(0≤t≤5).
(1)當t為何值時,以P、Q、B為頂點的三角形與△ABC相似.
(2)分別過點A,B作直線CP的垂線,垂足為D,E,設AD+BE=y,求y與t的函數關系式;并求當t為何值時,y有最大值.
(3)直接寫出PQ中點移動的路徑長度.
【答案】
(1)
解:∵∠ACB=90°,AC=8cm,BC=6cm,
∴BC=10cm.
由題意可知,PA=2t,BP=10﹣2t,CQ=t,BQ=6﹣t.
①若 ,則△BQP∽△BCA.
即 .解得t=0;
②若 ,則△BQP∽△BAC.
即 .解得t=
.
故當t=0或t= 時,以P,Q,C為頂點的三角形與△ABC相似
(2)
解:如圖1,作PF⊥AC,垂足為F.
∴△APF∽△ABC.
∴ ,即
,
解得PF= ,AF=
.
∴CF=8﹣ ,
∴CP= =2
,
∵S△APC= CPAD=
PFAC=
8=
,
∴AD= .
同理BE= .
∴y=AD+BE= +
=
=
,
y= =
,當t=
時,y的最大值為10cm
(3)
解:如圖2,設PQ的中點為M,以C為原點,以AC所在直線為x軸,建立平面直角坐標系,
依題意,可知0≤t≤5,當t=0時,點M1的坐標為(4,0);
當t=5時,點M2的坐標為(0,5.5),設直線M1M2的解析式為y=kx+b,
∴ ∴
,
∴直線M1M2的解析式為y=﹣ x+
.
由(2)知點Q(0,t),P(8﹣ ,
),
∴在運動過程中,線段PQ中點M3的坐標為(4﹣ ,
),
把x=4﹣ ,代入y=﹣
x+
,得y=
,
∴點M3在M1M2直線上,
∴線段PQ中點M所經過的路徑長為 =
cm.
【解析】(1)根據勾股定理得到BC=10,根據已知條件得到PA=2t,BP=10﹣2t,CQ=t,BQ=6﹣t.根據相似三角形的性質列方程即可得到結論;(2)如圖1,作PF⊥AC,垂足為F.根據相似三角形的性質得到PF= ,AF=
.求得CF=8﹣
,根據勾股定理得到CP=
=2
,根據三角形的面積即可得到結論;(3)如圖2,設PQ的中點為M,以C為原點,以AC所在直線為x軸,建立平面直角坐標系,依題意,可知0≤t≤5,當t=0時,點M1的坐標為(4,0);當t=5時,點M2的坐標為(0,5.5),求得直線M1M2的解析式為y=﹣
x+
.根據勾股定理即可得到結論.
【考點精析】解答此題的關鍵在于理解確定一次函數的表達式的相關知識,掌握確定一個一次函數,需要確定一次函數定義式y=kx+b(k不等于0)中的常數k和b.解這類問題的一般方法是待定系數法,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數學 來源: 題型:
【題目】為配合全市“禁止焚燒秸稈”工作,某學校舉行了“禁止焚燒秸稈,保護環境,從我做起”為主題的演講比賽,賽后組委會整理參賽同學的成績,并制作了如圖不完整的頻數分布表和頻數分布直方圖
分數段(分手為x分) | 頻數 | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x≤90 | 16 | b% |
90≤x<100 | 4 | 10% |
請根據圖表提供的信息,解答下列問題:
(1)表中的a= , b=;請補全頻數分布直方圖;
(2)若用扇形統計圖來描述成績分布情況,則分數段70≤x<80對應扇形的圓心角的度數是 .
(3)競賽成績不低于90分的4名同學中正好有2名男同學,2名女同學.學校從這4名同學中隨機抽2名同學接受電視臺記者采訪,則正好抽到一名男同學和一名女同學的概率為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某調查公司對本區域的共享單車數量及使用次數進行了調查發現,今年3月份第1周共有各類單車1000輛,第2周比第1周增加了10%,第3周比第2周增加了100輛,調查還發現某款單車深受群眾喜愛,第1周該單車的每輛平均使用次數是這一周所有單車平均使用次數的2.5倍,第2、第3周該單車的每輛平均使用次數都比前一周增長一個相同的百分數m,第3周所有單車的每輛平均使用次數比第1周增加的百分數也是m,而且第3周該款單車(共100輛)的總使用次數占到所有單車總使用次數的四分之一.(注:總使用次數=每輛平均使用次數×車輛數)
(1)求第3周該區域內各類共享單車的數量;
(2)求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動點P在線段AC上以5cm/s的速度從點A運動到點C,過點P作PD⊥AB于點D,將△APD繞PD的中點旋轉180°得到△A′DP,設點P的運動時間為x(s).
(1)當點A′落在邊BC上時,求x的值;
(2)在動點P從點A運動到點C過程中,當x為何值時,△A′BC是以A′B為腰的等腰三角形;
(3)如圖(2),另有一動點Q與點P同時出發,在線段BC上以5cm/s的速度從點B運動到點C,過點Q作QE⊥AB于點E,將△BQE繞QE的中點旋轉180°得到△B′EQ,連結A′B′,當直線A′B′與△ABC的一邊垂直時,求線段A′B′的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于F.
(1)求證:△AEF≌△DEC;
(2)連接BF,若AF=DB,AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖①、②、③均是4×4的正方形網格,每個小正方形頂點叫做格點,點O和線段AB的端點在格點上,按要求完成下列作圖.
(1)在圖①、②中分別找到格點C、D,使以點A、B、C、D為頂點的四邊形是平行四邊形,且點O到這個四邊形的兩個端點的距離相等,畫出兩個這樣的平行四邊形.
(2)在圖③中找到格點E、F,使以A、B、E、F為頂點的四邊形的面積最大,且點O到這個四邊形的兩個端點的距離相等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學九年級舞蹈興趣小組8名學生的身高分別為(單位:cm):168,165,168,166,170,170,176,170,則下列說法錯誤的是( )
A.這組數據的眾數是170
B.這組數據的中位數是169
C.這組數據的平均數是169
D.若從8名學生中任選1名學生參加校文藝會演,則這名學生的身高不低于170的概率為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在圓心角為90°的扇形AOB中,半徑OA=3,OC=AC,OD= BD,F是弧AB的中點.將△OCD沿CD折疊,點O落在點E處,則圖中陰影部分的面積為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com