【題目】如圖,點A(1,1),B(3,1),C(3,﹣1),D(1,﹣1)構成正方形ABCD,以AB為邊做等邊△ABE,則∠ADE和點E的坐標分別為( )
A. 15°和(2,1+)
B. 75°和(2,﹣1)
C. 15°和(2,1+)或75°和(2,
﹣1)
D. 15°和(2,1+)或75°和(2,1﹣
)
【答案】D
【解析】
分為兩種情況:①當△ABE在正方形ABCD外時,過E作EM⊥AB于M,根據
等邊三角形性質求出AM、AE,根據勾股定理求出EM,即可得出E的坐標,求出∠EAD,
根據三角形的內角和定理和等腰三角形性質即可求出∠ADE;②當等邊△ABE在正方形
ABCD內時,同法求出此時E的坐標,求出∠DAE,根據三角形的內角和定理和等腰三角
形性質即可求出∠ADE.
分為兩種情況:①△ABE在正方形ABCD外時,如圖,過E作EM⊥AB于M,
∵等邊三角形ABE,
∴AE=AB=3﹣1=2,
∴AM=1,
由勾股定理得:AE2=AM2+EM2,
∴22=12+EM2,
∴
∵A(1,1),
∴E的坐標是
∵等邊△ABE和正方形ABCD,
∴∠DAB=90°,∠EAB=60°,AD=AE,
∴
②同理當△ABE在正方形ABCD內時,同法求出E的坐標是
∵∠DAE=90°﹣60°=30°,
AD=AE,
∴
∴∠ADE和點E的坐標分別為15°,或75°,
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC關于原點對稱的△A1B1C1;
(2)四邊形CBC1B1為 四邊形;
(3)點P為平面內一點,若以點A、B、C、P為頂點的四邊形為平行四邊形,請直接寫出所有滿足條件的點P坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某經銷商經銷的冰箱二月份的售價比一月份每臺降價500元,已知賣出相同數量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.
(1)二月份冰箱每臺售價為多少元?
(2)為了提高利潤,該經銷商計劃三月份再購進洗衣機進行銷售,已知洗衣機每臺進價為4000元,冰箱每臺進價為3500元,預計用不多于7.6萬元的資金購進這兩種家電共20臺,設冰箱為y臺(y≤12),請問有幾種進貨方案?
(3)三月份為了促銷,該經銷商決定在二月份售價的基礎上,每售出一臺冰箱再返還顧客現金a元,而洗衣機按每臺4400元銷售,這種情況下,若(2)中各方案獲得的利潤相同,則a應取何值?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣3,0),點 B是 y軸正半軸上一動點,點C、D在 x正半軸上.
(1)如圖,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的兩條角平分線,且BD、CE交于點F,直接寫出CF的長_____.
(2)如圖,△ABD是等邊三角形,以線段BC為邊在第一象限內作等邊△BCQ,連接 QD并延長,交 y軸于點 P,當點 C運動到什么位置時,滿足 PD=DC?請求出點C的坐標;
(3)如圖,以AB為邊在AB的下方作等邊△ABP,點B在 y軸上運動時,求OP的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】鄭州市自2019年12月1日起推行垃圾分類,廣大市民對垃圾桶的需求劇增.為滿足市場需求,某超市花了7900元購進大小不同的兩種垃圾桶共800個,其中,大桶和小桶的進價及售價如表所示.
大桶 | 小桶 | |
進價(元/個) | 18 | 5 |
售價(元/個) | 20 | 8 |
(1)該超市購進大桶和小桶各多少個?
(2)當小桶售出了300個后,商家決定將剩下的小桶的售價降低1元銷售,并把其中一定數量的小桶作為贈品,在顧客購買大桶時,買一贈一(買一個大桶送一個小桶),送完即止.
請問:超市要使這批垃圾桶售完后獲得的利潤為1550元,那么小桶作為贈品送出多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(-3,3),B(-4,-2),C(-1,-1).
(1)在圖中作出△ABC關于y軸對稱的△A'B'C',并寫出點C'的坐標________;
(2)在y軸上畫出點P,使PA+PC最小,并直接寫出P點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB⊥BC,射線CM⊥BC,且BC=4,AB=1,點P是線段BC(不與點B、C重合)上的動點,過點P作DP⊥AP交射線CM于點D,連結AD.
(1)如圖1,若BP=3,求△ABP的周長;
(2)如圖2,若DP平分∠ADC,試猜測PB和PC的數量關系,并說明理由;
(3)若△PDC是等腰三角形,作點B關于AP的對稱點B′,連結B′D,則B′D=_____.(請直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點B,
點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE
的面積為3,則k的值為 ▲ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛汽車開往距離出發地的目的地,出發后第一小時內按原計劃的速度勻速行駛,一小時后以原來速度的1.5倍勻速行駛,并比原計劃提前
到達目的地,設前一個小時的行駛速度為
(1)直接用的式子表示提速后走完剩余路程的時間為
(2)求汽車實際走完全程所花的時間.
(3)若汽車按原路返回,司機準備一半路程以的速度行駛,另一半路程以
的速度行駛(
),朋友提醒他一半時間以
的速度行駛,另一半時間以
的速度行駛更快,你覺得誰的方案更快?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com