【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連結CE.
(1)求證:BD=EC;
(2)若AB=5, BD=6時,求△ACE的周長.
【答案】(1)見詳解;(2)24
【解析】
(1)根據菱形的性質,可得AB=CD,AB∥CD,然后證明四邊形BECD是平行四邊形,即可得到結論成立;
(2)易得AE=10,CE=BD=6,由OB是中位線,得到OB∥CE,則CE⊥AC,利用勾股定理求出AC=8,即可求出周長.
(1)證明:四邊形ABCD是菱形,
∴AB=CD,AB∥CD,
又∵BE=AB,
∴BE=CD,BE∥CD,
∴四邊形BECD 是平行四邊形,
∴BD=EC;
(2)解:∵BE=AB=5,
∴AE=10,CE=BD=6,
在菱形ABCD中,BD⊥AC,
∵點O是AC中點,點B是AE中點,
∴OB∥CE,
∴CE⊥AC,
在Rt△ACE中,由勾股定理,得
,
∴△ACE的周長為:.
科目:初中數學 來源: 題型:
【題目】在下列的網格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;
(2)若點B的坐標為(-3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;
(3)根據(2)中的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并標出B2、C2兩點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①是一個長為,寬為
的長方形,沿虛線用剪刀平均分成四個小長方形,然后按圖②的形狀拼成一個正方形.
(1)圖②中陰影部分的正方形的邊長為
(2)觀察圖②,三個代數式之間的數量關系式是 .
(3)觀察圖③,寫出一個代數恒等式: .
(4)在下面的虛線框中畫出一個幾何圖形,使它的面積能表示成
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y=(k≠0)的圖象經過點A(﹣2,m),過點A作AB⊥x軸于點B,且△AOB的面積為4.
(Ⅰ)求k和m的值;
(Ⅱ)設C(x,y)是該反比例函數圖象上一點,當1≤x≤4時,求函數值y的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與
垂直,測得CD的長等于21米,在
上點D的同側取點A、B,使∠CAD=300,∠CBD=600.
(1)求AB的長(精確到0.1米,參考數據:);
(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AC=BC,AC的垂直平分線分別交AC,BC于點E,F.點D為AB邊的中點,點M為EF上一動點,若AB=4,△ABC的面積是16,則△ADM周長的最小值為( 。
A.20B.16C.12D.10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一圓內接正八邊形ABCDEFGH,若△ADE的面積為8,則正八邊形ABCDEFGH的面積為( 。
A. 32 B. 40 C. 24 D. 30
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,
,
,
是
的兩條角平分線,且
,
交于點
.
(1)如圖1,用等式表示,
,
這三條線段之間的數量關系,并證明你的結論;
小東通過觀察、實驗,提出猜想:.他發現先在
上截取
,使
,連接
,再利用三角形全等的判定和性質證明
即可.
①下面是小東證明該猜想的部分思路,請補充完整:
ⅰ)在上截取
,使
,連接
,則可以證明
與 全等,判定它們全等的依據是 ;
ⅱ)由,
,
是
的兩條角平分線,可以得出
°;
②請直接利用ⅰ),ⅱ)已得到的結論,完成證明猜想的過程.
(2)如圖2,若 ,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com