【題目】近年來,共享單車服務的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.
(1)求單車車座E到地面的高度;(結果精確到1cm)
(2)根據經驗,當車座E到CB的距離調整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現將車座E調整至座椅舒適高度位置E′,求EE′的長.(結果精確到0.1cm)
(參考數據:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在線段AC上,連接AD, BE的延長線交AD于F.
(1)猜想線段BE、AD的數量關系和位置關系:_______________(不必證明);
(2)當點E為△ABC內部一點時,使點D和點E分別在AC的兩側,其它條件不變.
①請你在圖2中補全圖形;
②(1)中結論成立嗎?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數與形是數學中的兩個最古老,也是最基本的研究對象,它們在一定條件下可以互相轉化.樹形結合就是把抽象的數學語言、數量關系與直觀的幾何圖形、位置關系結合起來,通過“以形助數”或“以數解形”即通過抽象思維與形象思維的結合,可以使復雜問題簡單化,抽象問題具體化,從而起到優化解題途徑的目的.
(1) (思想應用)已知m, n均為正實數,且m+n=2求的最小值通過分析,愛思考的小明想到了利用下面的構造解決此問題:如圖, AB=2,AC=1,BD=2,AC⊥AB,BD⊥AB,點E是線段AB上的動點,且不與端點重合,連接CE,DE,設AE=m, BE=n.
①用含m的代數式表示CE=_______, 用含n的代數式表示DE= ;
②據此求的最小值;
(2)(類比應用)根據上述的方法,求代數式的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c.將Rt△ABC繞點O依次旋轉90°、180°和270°,構成的圖形如圖所示.該圖是我國古代數學家趙爽制作的“勾股圓方圖”,也被稱作“趙爽弦圖”,它是我國最早對勾股定理證明的記載,也成為了2002年在北京召開的國際數學家大會的會標設計的主要依據.
(1)請利用這個圖形證明勾股定理;
(2)請利用這個圖形說明a2+b2≥2ab,并說明等號成立的條件;
(3)請根據(2)的結論解決下面的問題:長為x,寬為y的長方形,其周長為8,求當x,y取何值時,該長方形的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角三角形紙片ABC中,∠ACB=90°,AC=2,BC=4,點D在邊AB上,以CD為折痕將△CBD折疊得到△CPD,CP與邊AB交于點E,若△DEP為直角三角形,則BD的長是_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
和
的角平分線相交于點
,過點
作
交
于
,交
于
,過點
作
于
.下列五個結論:其中正確的有( )
(1);(2)
;(3)點
到
各邊的距離都相等;(4)設
,若
,則
;(5)
.( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙二人同時從A地出發,沿同一條道路去B地,途中都使用兩種不同的速度Vl與V2(Vl<V2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;乙用一半的時間使用速度Vl、另一半的時間使用速度V2;關于甲乙二人從A地到達B地的路程與時間的函數圖象及關系,有圖中4個不同的圖示分析.其中橫軸t表示時間,縱軸s表示路程,其中正確的圖示分析為( 。
A. 圖(1) B. 圖(1)或圖(2) C. 圖(3) D. 圖(4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線c和直線b相較于點,直線c過點
平行于y軸的動直線a的解析式為
,且動直線a分別交直線b、c于點D、
在D的上方
.
求直線b和直線c的解析式;
若P是y軸上一個動點,且滿足
是等腰直角三角形,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一個圓柱形玻璃杯高,底面周長為
,有一只螞蟻在一側距下底
的外側
點,與點
正對的容器內側距下底
的
點處有一飯粒,螞蟻想吃
處的飯粒,要從杯子的外側爬到杯子的內側,杯子的厚度忽略不計,則至少需要爬________________
。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com