【題目】在平面直角坐標系中,點O為原點,平行于x軸的直線與拋物線L:y=ax2相交于A,B兩點(點B在第一象限),點C在AB的延長線上.
(1)已知a=1,點B的縱坐標為2.如圖1,向右平移拋物線L使該拋物線過點B,與AB的延長線交于點C,AC的長為__.
(2)如圖2,若BC=AB,過O,B,C三點的拋物線L3,頂點為P,開口向下,對應函數的二次項系數為a3, =__.
【答案】4 ﹣
【解析】
解:(1)當a=1時,拋物線L的解析式為:y=x2,
當y=2時,2=x2,
∴x=±,
∵B在第一象限,
∴A(﹣,2),B(
,2),
∴AB=2,
∵向右平移拋物線L使該拋物線過點B,
∴AB=BC=2,
∴AC=4;
(2)如圖2,設拋物線L3與x軸的交點為G,其對稱軸與x軸交于Q,過B作BK⊥x軸于K,
設OK=t,則AB=BC=2t,
∴B(t,at2),
根據拋物線的對稱性得:OQ=2t,OG=2OQ=4t,
∴O(0,0),G(4t,0),
設拋物線L3的解析式為:y=a3(x﹣0)(x﹣4t),
y=a3x(x﹣4t),
∵該拋物線過點B(t,at2),
∴at2=a3t(t﹣4t),
∵t≠0,
∴a=﹣3a3,
∴=﹣
,
故答案為:(1)4;(2)﹣
.
科目:初中數學 來源: 題型:
【題目】已知BC=5,AB=1,AB⊥BC,射線CM⊥BC,動點P在線段BC上(不與點B,C重合),過點P作DP⊥AP交射線CM于點D,連接AD.
(1)如圖1,若BP=4,判斷△ADP的形狀,并加以證明.
(2)如圖2,若BP=1,作點C關于直線DP的對稱點C′,連接AC′.
①依題意補全圖2;
②請直接寫出線段AC′的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校計劃為“我和我的祖國”演講比賽購買獎品.已知購買3個A獎品和2個B獎品共需130元;購買5個A獎品和4個B獎品共需230元.
(1)求A,B兩種獎品的單價;
(2)學校準備購買A,B兩種獎品共40個,且A獎品的數量不少于B獎品數量的.購買預算金不超過920元,請問學校有幾種購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從水平地面看一山坡上的通訊鐵塔PC,在點A處用測角儀測得塔頂端點P的仰角是45°,向前走9m到達B點,用測角儀測得塔頂端點P和塔底端點C的仰角分別是60°和30°.
(1)求∠BPC的度數.
(2)求該鐵塔PF的高度,(結果精確到0.1m,參考數據:≈1.73.)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】溫州甌柑,聲名遠播.某經銷商欲將倉庫的120噸甌柑運往A,B兩地銷售.運往A,B兩地的甌柑(噸)和每噸的運費如下表.設倉庫運往A地的甌柑為x噸,且x為整數.
甌柑(噸) | 運費(元/噸) | |
A地 | x | 20 |
B地 | 30 |
(1)設倉庫運往A,B兩地的總運費為y元.
①將表格補充完整.
②求y關于x的函數表達式.
(2)若倉庫運往A地的費用不超過運往A,B兩地費用的,求總運費的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE=BF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某汽車專賣店銷售,
兩種型號的新能源汽車。上周售出1輛
型車和3輛
型車,銷售額為96萬元,本周已售出2輛
型車和1輛
型車,銷售額為62萬元。
(1)求每輛型車和
型車的售價各為多少?
(2)隨著汽車限購政策的推行,預計下周起,
兩種型號的汽車價格在原有的基礎均有上漲,若
型汽車價格上漲m%,
型汽車價格上漲3m%,則同時購買一臺
型車和一臺
型車的費用比漲價前多12%,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=kx(k≠0)沿著y軸向上平移3個單位長度后,與x軸交于點B(3,0),與y軸交于點C,拋物線y=x2+bx+c過點B、C且與x軸的另一個交點為A.
(1)求直線BC及該拋物線的表達式;
(2)設該拋物線的頂點為D,求△DBC的面積;
(3)如果點F在y軸上,且∠CDF=45°,求點F的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com