【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點E、F,若CE=2,連接CF.以下結論:①∠BAF=∠BCF; ②點E到AB的距離是2; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正確的有()
A. 4個 B. 3個 C. 2個 D. 1個
科目:初中數學 來源: 題型:
【題目】2020年是5G爆發元年,三大運營商都在政策的支持下,加快著5G建設的步伐.某通信公司實行的5G暢想套餐,部分套餐資費標準如下:
套餐類型 | 月費(元/月) | 套餐內包含內容 | 套餐外資費 | ||
國內數據流量(GB) | 國內主叫(分鐘) | 國內流量 | 國內主叫 | ||
套餐1 | 128 | 30 | 200 | 每5元1GB,用滿3GB后每3元1GB,不足部分按照0.03/元MB收取 | 0.19元/分鐘 |
套餐2 | 158 | 40 | 300 | ||
套餐3 | 198 | 60 | 500 | ||
套餐4 | 238 | 80 | 600 |
小武每月大約使用國內數據流量49GB,國內主叫350分鐘,若想使每月付費最少,則他應預定的套餐是( )
A.套餐1B.套餐2C.套餐3D.套餐4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們規定,以二次函數的二次項系數
的2倍為一次項系數,一次項系數
為常數項構造的一次函數
叫做二次函數
的“子函數”,反過來,二次函數
叫做一次函數
的“母函數”.
(1)若一次函數是二次函數
的“子函數”,且二次函數經過點
,求此二次函數的解析式.
(2)如圖,已知二次函數的“子函數”圖象直線
與
軸、
軸交于
、
兩點,點
是直線
上方的拋物線上任意一點,求
的面積的最大值.
(3)已知二次函數與它的“子函數”
的函數圖象有兩個交點
,
,且
,求
的值;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】自從開展“創建全國文明城區“工作以來,門頭溝區便掀起了“門頭溝熱心人“志愿服務的熱潮,區教委也號召各校學生積極參與到志愿服務當中.為了解甲、乙兩所學校學生一周志愿服務情況,從這兩所學校中各隨機抽取40名學生,分別對他們一周的志愿服務時長(單位:分鐘)數據進行收集、整理、描述和分析.下面給出了部分信息:
a.甲校40名學生一周的志愿服務時長的扇形統計圖如圖(數據分成6組:):
A: B:
C: D:
E: F:
b.甲校40名學生一周志愿服務時長在這一組的是:
60 60 62 63 65 68 70 72 73 75 75 76 80 80
c.甲、乙兩校各抽取的40名學生一周志愿服務時長的平均數、中位數、眾數如下:
學校 | 平均數 | 中位數 | 眾數 |
甲校 | 75 | 90 | |
乙校 | 75 | 76 | 85 |
根據以上信息,回答下列問題:
(1)_____________;
(2)根據上面的統計結果,你認為____①_____所學校學生志愿服務工作做得好(填“甲“或“乙“),理由______②________________________________________________________;
(3)甲校要求學生一周志愿服務的時長不少于60分鐘,如果甲校共有學生800人,請估計甲校學生中一周志愿服務時長符合要求的有_______人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場計劃購進,
兩種新型節能臺燈共120盞,這兩種臺燈的進價和售價如表所示:
價格 類型 | 進價(元/盞) | 售價(元/盞) |
40 | 55 | |
60 | 80 |
(1)若商場恰好用完預計進貨款5500元,則應這購進兩種臺燈各多少盞?
(2)若商場規定型臺燈的進貨數量不超過
型臺燈數量的3倍,應怎樣進貨才能使商場在銷售完這兩種臺燈時獲得的毛利潤最多?最多毛利潤為多少元?(毛利潤=銷售收入-進貨成本).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象與y軸交于點A(0,4),與x軸負半軸交于B,與正半軸交于點C(8,0),且∠BAC=90°.
(1)求該二次函數解析式;
(2)若N是線段BC上一動點,作NE∥AC,交AB于點E,連結AN,當△ANE面積最大時,求點N的坐標;
(3)若點P為x軸上方的拋物線上的一個動點,連接PA、PC,設所得△PAC的面積為S.問:是否存在一個S的值,使得相應的點P有且只有2個?若有,求出這個S的值,并求此時點P的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,雙曲線y1=與直線y2=
的圖象交于A、B兩點.已知點A的坐標為(4,1),點P(a,b)是雙曲線y1=
上的任意一點,且0<a<4.
(1)分別求出y1、y2的函數表達式;
(2)連接PA、PB,得到△PAB,若4a=b,求三角形ABP的面積;
(3)當點P在雙曲線y1=上運動時,設PB交x軸于點E,延長PA交x軸于點F,判斷PE與PF的大小關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.為了解全國中學生視力的情況,應采用普查的方式
B.某種彩票中獎的概率是,買1000張這種彩票一定會中獎
C.從2000名學生中隨機抽取200名學生進行調查,樣本容量為200名學生
D.從只裝有白球和綠球的袋中任意摸出一個球,摸出黑球是確定事件
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是某企業甲、乙兩位員工的能力測試結果的網狀圖,以O為圓心的五個同心圓分別代表能力水平的五個等級由低到高分別賦分1至5分,由原點出發的五條線段分別指向能力水平的五個維度,網狀圖能夠更加直觀的描述測試者的優勢和不足,觀察圖形,有以下幾個推斷:
①甲和乙的動手操作能力都很強;
②缺少探索學習的能力是甲自身的不足;
③與甲相比乙需要加強與他人的溝通合作能力;
④乙的綜合評分比甲要高.
其中合理的是( )
A.①③B.②④C.①②③D.①②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com