【題目】如圖,已知:在矩形ABCD中,AB=2,BC=4,P是對角線BD上的一個動點,作PF⊥BD于P,交邊BC于點F(點F與點B、C都不重合),E是射線FC上一動點,連接PE、ED,并一直保持∠EPF=∠FBP,設B、P兩點的距離為x,△DEP的面積為y
(1)求出tan∠PBF;
(2)求y關于x的函數解析式,并寫出自變量的取值范圍
(3)當△DEP與△BCD相似時,求△DEP的面積
【答案】(1);(2)
;(3)當∠DEP=90°時,面積為
;當∠PDE=90°時,面積為
【解析】
(1)利用矩形的性質以及銳角三角函數關系進而得出,即可得出tan∠PBF的值;
(2)首先根據相似三角形的判定定理得出,然后利用相似三角形的性質進而得出
,即可求出y與x的函數關系;
(3)利用當△DEP與△BCD相似時,只有兩種情況:∠DEP=∠C=90°或∠EDP=∠C=90°,分別利用勾股定理和相似三角形的性質計算得出答案即可.
(1)∵四邊形ABCD是矩形,
又
即
又
,即
如圖,作垂足為H,則
又
設則
,
,
又
由勾股定理得:
=
又
當△DEP與△BCD相似時,
只有兩種情況:∠DEP=∠C=90°或∠EDP=∠C=90°
①當∠DEP=90°,
∵∠DPE+∠PDE=90°即
∠PDE=∠CBD
∴BE=DE
設CE=a,則BE=DE=4-a
在Rt△DEC中,勾股定理得
解之
則,
又∵△BCD的面積=4
②當∠EDP=90°,如圖2,
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l的函數表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;…按此做法進行下去,其中的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:點A、B、C、D為⊙O上的四等分點,動點P從圓心O出發,沿O﹣C﹣D﹣O的路線做勻速運動.設運動的時間為t秒,∠APB的度數為y.則下列圖象中表示y與t之間函數關系最恰當的是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】老王面前有兩個容積相同的杯子,杯子甲他裝了三分之一的葡萄酒,杯子乙他裝了半杯的王老吉涼茶,老張過來將裝有涼茶的杯子乙倒滿了酒,老王又將杯子乙中飲料倒一部分到杯子甲,使得兩個杯子的飲料分量相同.然后老王讓老張先選一杯一起喝了,如果老張不想多喝酒,那么他應該選擇( )
A.甲杯B.乙杯C.甲、乙是一樣的D.無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉90°,則旋轉后點D的對應點D′的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次臺風來襲時,一棵筆直大樹樹干AB(假定樹干AB垂直于水平地面)被刮傾斜7°(即∠BAB′=7°)后折斷倒在地上,樹的頂部恰好接觸到地面D處,測得∠CDA=37°,AD=5米,求這棵大樹AB的高度.(結果保留根號)(參考數據:sin37≈0.6,cos37=0.8,tan37≈0.75)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求證:四邊形ABCD是菱形;
(2)過點D作DE⊥BD,交BC的延長線于點E,若BC=5,BD=8,求四邊形ABED的周長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com