精英家教網 > 初中數學 > 題目詳情

【題目】一批貨物要運往某地,貨主準備租用汽車運輸公司的甲、乙兩種貨車,已知過去兩次租用這種貨車的情況如下表:

現租用該公司3輛甲種貨車及5輛乙種貨車一次剛好運完這批貨,如果按每噸付運費30元計算,貨主應付運費多少元?

【答案】貨主應該付運輸費735元.

【解析】試題本題需知道1輛甲種貨車,1輛乙種貨車一次運貨噸數.等量關系為:2輛甲種貨車運貨噸數+3輛乙種貨車運貨噸數=15.5;5輛甲種貨車運貨噸數+6輛乙種貨車運貨噸數=35.

試題解析:設甲、乙兩種貨車每輛每次分別運貨x噸、y噸,

根據題意,得

解這個方程組,得

則所運貨物有3×4+5×2.5=24.5(噸),

所以貨主應該付運輸費為24.5×30=735(元).

答:貨主應該付運輸費735元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某種洗衣機在洗滌衣服時,經歷了進水、清洗、排水、脫水四個連續的過程,其中進水、清洗、排水時洗衣機中的水量y()與時間x(分鐘)之間的關系如折線圖所示.根據圖象解答下列問題:

(1)洗衣機的進水時間是多少分鐘?清洗時洗衣機中水量為多少升?

(2)已知洗衣機的排水速度為每分鐘19升.

①求排水時洗衣機中的水量y()與時間x(分鐘)與之間的關系式;

②如果排水時間為2分鐘,求排水結束時洗衣機中剩下的水量.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線軸交于點,與軸交于點,,分別以為邊作矩形,直線于點,交直線于點

1)求直線的解析式及點的坐標.

2)如圖2,為直線上一動點,點,點為直線上兩動點(在上,在下),滿足,當最大時,求的最小值,并求出此時點的坐標.

3)如圖3,將繞著點順時針旋轉,記旋轉后的三角形為,線段所在的直線交直線于點不與、重合),交軸于點,在平面內是否存在一點,使得以四點形成的四邊形為菱形,若存在,請直接寫出點的坐標;若不存在,請說出理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,ACBD相交于點OECD上一點,FOD上一點,且∠1=∠A

1)求證:;

2)若∠BFE=110°A=60°,求∠B的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC 中,點 O 是邊 AC 上一個動點,過 O 作直線 MNBC,設 MN 交∠ACB 的平分線于點 E,交∠ACB 的外角平分線于點 F

1)求證:OEOF;

2)當點 O 在邊 AC 上運動到什么位置時,四邊形 AECF 是矩形?并說明理由.

3)若 AC 邊上存在點 O,使四邊形 AECF 是正方形,猜想ABC 的形狀并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】完成下列證明:

如圖,已知ADBC,EFBC,1=2.

求證:DGBA.

證明:ADBC,EFBC(已知)

∴∠EFB=ADB=90°(

EFAD(

∴∠1=BAD(

∵∠1=2(已知)

(等量代換)

DGBA.(

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】直角三角板ABC的直角頂點C在直線DE上,CF平分∠BCD

1)在圖1中,若∠BCE40°,∠ACF   ;

2)在圖1中,若∠BCE=α,∠ACF   (用含α的式子表示);

3)將圖1中的三角板ABC繞頂點C旋轉至圖2的位置,若∠BCE150°,試求∠ACF與∠ACE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某醫藥研究所開發一種新藥,在做藥效試驗時發現,如果成人按規定劑量服用,那么服藥后,每毫升血液中含藥量y(μg)隨時間t(h)的變化圖象如圖所示,根據圖象回答:

(1)服藥后幾時血液中含藥量最高?每毫升血液中含多少微克?

(2)在服藥幾時內,每毫升血液中含藥量逐漸升高?在服藥幾時后,每毫升血液中含藥量逐漸下降?

(3)服藥后14 h時,每毫升血液中含藥量是多少微克?

(4)如果每毫升血液中含藥量為4微克及以上時,治療疾病有效,那么有效時間為幾時?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法中,正確的是(  )

A. 不帶根號的數不是無理數

B. 的立方根是±2

C. 絕對值等于的實數是

D. 每個實數都對應數軸上一個點

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视