如圖,拋物線與軸交于
(
,0)、
(
,0)兩點,且
,與
軸交于點
,其中
是方程
的兩個根。
(1)求拋物線的解析式;
(2)點是線段
上的一個動點,過點
作
∥
,交
于點
,連接
,當
的面積最大時,求點
的坐標;
(3)點在(1)中拋物線上,點
為拋物線上一動點,在
軸上是否存在點
,使以
為頂點的四邊形是平行四邊形,如果存在,求出所有滿足條件的點
的坐標,若不存在,請說明理由。
![]() |
(1)∵,∴
,
。
∴,
。····················1分
又∵拋物線過點、
、
,
故設拋物線的解析式為,
將點的坐標代入,求得
。
∴拋物線的解析式為。········3分
(2)設點的坐標為(
,0),過點
作
軸于點
(如圖(1))。
∵點的坐標為(
,0),點
的坐標為(6,0),
∴,
。···························4分
∵,∴
。
∴,∴
,∴
。·················5分
∴
······6分
。
∴當時,
有最大值4。
此時,點的坐標為(2,0)。··············7分
(3)∵點(4,
)在拋物線
上,
∴當
時,
,
∴點的坐標是(4,
)。
如圖(2),當為平行四邊形的邊時,
,
∵(4,
),∴
(0,
),
。
∴,
。 ··········9分
① 如圖(3),當為平行四邊形的對角線時,
設,則平行四邊形的對稱中心為
(,0)。·················10分
∴的坐標為(
,4)。
把(
,4)代入
,得
。
解得 。
,
。
科目:初中數學 來源: 題型:
如圖,拋物線與軸交于
(
,0)、
(
,0)兩點,且
,與
軸交于點
,其中
是方程
的兩個根。(14分)
(1)求拋物線的解析式;
(2)點
是線段
上的一個動點,過點
作
∥
,交
于點
,連接
,當
的面積最大時,求點
的坐標;
(3)點在(1)中拋物線上,
點為拋物線上一動點,在
軸上是
否存在點,使以
為頂
點的四邊形是平行四邊形,如果存在,
求出所有滿足條件的點的坐標,
若不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,拋物線與
軸交于
兩點,與
軸相交于點
.連結AC、BC,B、C兩點的坐標分別為B(1,0)、
,且當x=-10和x=8時函數的值
相等.
1.求a、b、c的值;
2.若點同時從
點出發,均以每秒1個單位長度的速度分別沿
邊運動,其中一個點到達終點時,另一點也隨之停止運動.連結
,將
沿
翻折,當運動時間為幾秒時,
點恰好落在
邊上的
處?并求點
的坐標及四邊形
的面積;
3.上下平移該拋物線得到新的拋物線,設新拋物線的頂點為D,對稱軸與x軸的交點為E,若△ODE與△OBC相似,求新拋物線的解析式。
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,拋物線與
軸交于A、B兩點,與
軸交于C點,四邊形OBHC為矩形,CH的延長
線交拋物線于點D(5,2),連結BC、AD.
(1)求C點的坐標及拋物線的解析式;
(2)將△BCH繞點B按順時針旋轉90º后再沿軸對折得到△BEF(點C與點E對應),判斷點E是否落在拋物線上,并說明理由;
(3)設過點E的直線交AB邊于點P,交CD邊于點Q. 問是否存在點P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源:2013屆四川省鹽邊縣紅格中學九年級下學期摸底考試數學試卷(帶解析) 題型:解答題
如圖,拋物線與
軸交于
兩點,與
軸交于
點.
(1)請求出拋物線頂點的坐標(用含
的代數式表示),
兩點的坐標;
(2)經探究可知,與
的面積比不變,試求出這個比值;
(3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源:2012屆仙師中學九年級第一次月考試考試數學卷 題型:選擇題
如圖,拋物線與軸交于
(
,0)、
(
,0)兩點,且
,與
軸交于點
,其中
是方程
的兩個根。(14分)
(1)求拋物線的解析式;
(2)點
是線段
上的一個動點,過點
作
∥
,交
于點
,連接
,當
的面積最大時,求點
的坐標;
(3)點在(1)中拋物線上,
點為拋物線上一動點,在
軸上是
否存在點,使以
為頂
點的四邊形是平行四邊形,如果存在,
求出所有滿足條件的點的坐標,
若不存在,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com