精英家教網 > 初中數學 > 題目詳情

【題目】Rt△ABC中,∠ACB=90°,AB=9,cosA=,如果將△ABC繞著點C旋轉至△A′B′C′的位置,使點B′落在∠ACB的角平分線上,A′B′與AC相交于點D,那么線段CD的長等于______

【答案】30-12

【解析】

如圖,作B′F⊥ACF,A′E⊥ACE.利用面積法構建方程即可解決問題.

如圖,作B′F⊥ACF,A′E⊥ACE.

∵∠BCB′=∠ACB′=∠ACA′=45°,
∴△A′EC是等腰直角三角形,△FCB′是等腰直角三角形,
Rt△ACB中,AB=9,cosA=,
∴AC=6,BC=3,
∴BF=CF=,EC=A′E=3,
∵SA′B′C=×6×3=CD(3+),
∴CD=30-12.
故答案為30-12

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發,P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動.設運動時間為x秒,PBQ的面積為y(cm2).

(1)求y關于x的函數關系式,并寫出x的取值范圍;

(2)求PBQ的面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某武警部隊在一次地震搶險救災行動中,探險隊員在相距4米的水平地面A,B兩處均探測出建筑物下方C處有生命跡象,已知在A處測得探測線與地面的夾角為30°,B處測得探測線與地面的夾角為60°,求該生命跡象C所在位置的深度.(結果精確到0.1,參考數據:≈1.41,≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC的面積是12,AB=AC,BC=3,邊AC的垂直平分線交ACF,交ABE.點DBC的中點,點PEF上的一個動點,則△PCD的周長最小值是( )

A.4B.8C.7D.9.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果一個自然數可以表示為兩個連續奇數的立方差,那么我們就稱這個自然數為麻辣數.如:所以2,26均為麻辣數.注:立方差公式

(1)請判斷98169是否為麻辣數,并說明理由;

(2)請求出在不超過2016的自然數中,所有的麻辣數之和為多少?寫出完整的求解過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,AB=AC=10,sin∠BAC=,過點CCD∥AB,點E在邊AC上,AE=CD,聯結AD,BE的延長線與射線CD、射線AD分別交于點F、G.設CD=x,△CEF的面積為y.

(1)求證:∠ABE=∠CAD.

(2)如圖,當點G在線段AD上時,求y關于x的函數解析式及定義域.

(3)若△DFG是直角三角形,求△CEF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】勾股定理是幾何學中的明珠,充滿著魅力,千百年來,人們對它趨之若鶩,其中有著名的數學家,也有業余數學愛好者,向常春在1994年構造發現了一個新的證法:把兩個全等的直角三角形如圖1放置,其三邊長分別為a、b、c,顯然∠DAB=∠B90°,ACDE

1)請用a、b、c分別表示出梯形ABCD、四邊形AECD、EBC的面積,再通過探究這三個圖形面積之間的關系,證明:勾股定理a2+b2c2;

2)如圖2,鐵路上A、B兩點(看作直線上的兩點)相距40千米,C、D為兩個村莊(看作兩個點),ADABBCAB,垂足分別為A、B,AD24千米,BC16千米,在AB上有一個供應站P,且PCPD,求出AP的距離;

3)借助(2)的思考過程與幾何模型,直接寫出代數式的最小值為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB=BC,以AB為直徑的⊙OAC于點D,過DDEBC,垂足為E.

(1)求證:DE是⊙O的切線;

(2)DGAB交⊙OG,垂足為F,若∠A=30°,AB=8,求弦DG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為響應“書香學校,書香班級”的建設號召,平頂山市某中學積極行動,學校圖書角的新書、好書不斷增加.下面是隨機抽查該校若干名同學捐書情況統計圖:

請根據下列統計圖中的信息,解答下列問題:

1)此次隨機調查同學所捐圖書數的中位數是   ,眾數是   ;

2)在扇形統計圖中,捐2本書的人數所占的扇形圓心角是多少度?

3)若該校有在校生1600名學生,估計該校捐4本書的學生約有多少名?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视