【題目】在Rt△ABC中,∠ACB=90°,AB=9,cosA=,如果將△ABC繞著點C旋轉至△A′B′C′的位置,使點B′落在∠ACB的角平分線上,A′B′與AC相交于點D,那么線段CD的長等于______.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發,P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動.設運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關于x的函數關系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某武警部隊在一次地震搶險救災行動中,探險隊員在相距4米的水平地面A,B兩處均探測出建筑物下方C處有生命跡象,已知在A處測得探測線與地面的夾角為30°,在B處測得探測線與地面的夾角為60°,求該生命跡象C所在位置的深度.(結果精確到0.1米,參考數據:≈1.41,
≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的面積是12,AB=AC,BC=3,邊AC的垂直平分線交AC于F,交AB于E.點D是BC的中點,點P是EF上的一個動點,則△PCD的周長最小值是( )
A.4B.8C.7D.9.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果一個自然數可以表示為兩個連續奇數的立方差,那么我們就稱這個自然數為“麻辣數”.如:所以2,26均為“麻辣數”.注:立方差公式
(1)請判斷98和169是否為“麻辣數”,并說明理由;
(2)請求出在不超過2016的自然數中,所有的“麻辣數”之和為多少?寫出完整的求解過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC=10,sin∠BAC=,過點C作CD∥AB,點E在邊AC上,AE=CD,聯結AD,BE的延長線與射線CD、射線AD分別交于點F、G.設CD=x,△CEF的面積為y.
(1)求證:∠ABE=∠CAD.
(2)如圖,當點G在線段AD上時,求y關于x的函數解析式及定義域.
(3)若△DFG是直角三角形,求△CEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】勾股定理是幾何學中的明珠,充滿著魅力,千百年來,人們對它趨之若鶩,其中有著名的數學家,也有業余數學愛好者,向常春在1994年構造發現了一個新的證法:把兩個全等的直角三角形如圖1放置,其三邊長分別為a、b、c,顯然∠DAB=∠B=90°,AC⊥DE.
(1)請用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再通過探究這三個圖形面積之間的關系,證明:勾股定理a2+b2=c2;
(2)如圖2,鐵路上A、B兩點(看作直線上的兩點)相距40千米,C、D為兩個村莊(看作兩個點),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=24千米,BC=16千米,在AB上有一個供應站P,且PC=PD,求出AP的距離;
(3)借助(2)的思考過程與幾何模型,直接寫出代數式的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=BC,以AB為直徑的⊙O交AC于點D,過D作DE⊥BC,垂足為E.
(1)求證:DE是⊙O的切線;
(2)作DG⊥AB交⊙O于G,垂足為F,若∠A=30°,AB=8,求弦DG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應“書香學校,書香班級”的建設號召,平頂山市某中學積極行動,學校圖書角的新書、好書不斷增加.下面是隨機抽查該校若干名同學捐書情況統計圖:
請根據下列統計圖中的信息,解答下列問題:
(1)此次隨機調查同學所捐圖書數的中位數是 ,眾數是 ;
(2)在扇形統計圖中,捐2本書的人數所占的扇形圓心角是多少度?
(3)若該校有在校生1600名學生,估計該校捐4本書的學生約有多少名?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com