【題目】如圖,已知一條直線過點,且與拋物線
交于
兩點,其中點
的橫坐標是
.
⑴求這條直線的函數關系式及點的坐標 ;
⑵在軸上是否存在點
,使得△
是直角三角形?若存在,求出點
的坐標,若不存在,請說明理由;
⑶過線段上一點
,作
∥
軸,交拋物線于點
,點
在第一象限;點
,當點
的橫坐標為何值時,
的長度最大?最大值是多少?
【答案】(1)點的坐標為
;(2)
;(3)當
的橫坐標為6時,
的長度最大值為18.
【解析】⑴關鍵是求直線的解析式,由于直線上有一點為,所以再找一個點即可求出直線的解析式;
的橫坐標是
代入拋物線的解析式即可求出它的縱坐標,利用待定系數法可求直線的函數關系式;由于點
是兩個函數圖象的交點,所以把兩個函數聯立起來,利用方程思想可以解決問題.
⑵先假設存在,在假設存在的情況下還要分類討論,因為沒有指明直角頂點,所以要分成三種情況來討論,利用勾股定理建立方程可以解決問題.
⑶利用的橫坐標分別表示出線段
的長度,再利用
建立函數關系,再根據函數關系來求最值.
解:⑴∵直線與拋物線交點的橫坐標是
,
∴,
∴點的坐標是
設此直線的解析式為,
將 代入得
,
解得: ,
∴此直線的解析式為.
∵直線和拋物線交于兩點,
∴
解得: 或
∴點的坐標為
.
⑵.如備用圖,點在
軸上,連接
.
∵的坐標是
,點
的坐標為
,
∴ ,
若設存在的點的坐標為
,則:
,
,
①.當時,
,即
,
解得: .
②.當時,
,即
解得: 或
.
③.當時,
,即
解得: .
∴求出點的坐標為
.
⑶.設點 ,設
與
軸的交點為
;
在△
中,由勾股定理的:
,
又∵點與點
的縱坐標相同,∴
,
∴,即點
的橫坐標為
,
∴ ,
∴,
∴當時,又∵
,取值最大值取到18.
∴當的橫坐標為6時,
的長度最大值為18.
科目:初中數學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】快遞公司準備購買機器人來代替人工分揀已知購買- 臺甲型機器人比購買-臺乙型機器人多萬元;購買
臺甲型機器人和
臺乙型機器人共需
萬元.
(1)求甲、乙兩種型號的機器人每臺的價格各是多少萬元;
(2)已知甲型、乙型機器人每臺每小時分揀快遞分別是件、
件,該公司計劃最多用
萬元購買
臺這兩種型號的機器人.該公司該如何購買,才能使得每小時的分揀量最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.
(1)求證:AB與⊙O相切;
(2)若等邊三角形ABC的邊長是8,求線段BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用“”規定一種新運算:對于任意有理數a和b,規定ab=ab2+2ab+a.如:13=1×32+2×1×3+1=16
(1)求2(-1)的值;
(2)若(a+1)3=32,求a的值;
(3)若m=2x,n=(x)3(其中x為有理數),試比較m、n的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次考試中,某班級的數學成績統計圖如圖.下列說法錯誤的是( )
A. 得分在70~80分之間的人數最多 B. 該班的總人數為40
C. 得分在90~100分之間的人數最少 D. 及格(≥60分)人數是26
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把下列各數填在相應的大括號內:
﹣5,|-|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),
(1)正數集合:{ …}
(2)負數集合:{ …}
(3)整數集合:{ …}
(4)分數集合:{ …}.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線的圖象與
軸有兩個公共點.
(1)求的取值范圍,寫出當
取其范圍內最大整數時拋物線的解析式;
(2)將(1)中所求得的拋物線記為,
①求的頂點
的坐標;
②若當時,
的取值范圍是
,求
的值;
(3)將平移得到拋物線
,使
的頂點
落在以原點為圓心半徑為
的圓上,求點
與
兩點間的距離最大時
的解析式,怎樣平移
可以得到所求拋物線?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com