【題目】如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線 BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經過點M,交BC于點G,交 AB于點F.
(1)求證:AE為⊙O的切線;
(2)當BC=8,AC=12時,求EM的長;
(3)在(2)的條件下,可求出⊙O的半徑為 ,線段BG的長 .
【答案】(1)證明見解析;(2);(3)3,2.
【解析】
(1)連接OM.利用角平分線的性質和平行線的性質得到AE⊥OM后即可證得AE是⊙O的切線;
(2)設⊙O的半徑為R,根據OM∥BE,得到△OMA∽△BEA,由相似三角形的性質,可求出圓的半徑,在直角三角形AEB中根據勾股定理可求出AE的長,再由平行線分線段成比例定理即可求出EM 的長;
(3)由(2)可知圓的半徑為3,過點O作OH⊥BG于點H,則BG=2BH,根據∠OME=∠MEH=∠EHO=90°,得到四邊形OMEH是矩形,從而得到HE=OM=3和BH=1,證得結論BG=2BH=2.
(1)證明:連接OM.
∵AC=AB,AE平分∠BAC,
∴AE⊥BC,CE=BE=BC=4,
∵OB=OM,
∴∠OBM=∠OMB,
∵BM平分∠ABC,
∴∠OBM=∠CBM,
∴∠OMB=∠CBM,
∴OM∥BC,
又∵AE⊥BC,
∴AE⊥OM,
∴AE是⊙O的切線;
(2)設⊙O的半徑為R,
∵OM∥BE,
∴△OMA∽△BEA,
∴ ,
∵AC=AB=12,
即 ,
解得R=3,
∴⊙O的半徑為3,
∵OM∥BE,
∴AM:EM=AO:BO,
∵BE=4,AB=12,
∴AE=
即 .
解得:EM=2 ;
(3)由(2)可知圓的半徑為3,
過點O作OH⊥BG于點H,則BG=2BH,
∵∠OME=∠MEH=∠EHO=90°,
∴四邊形OMEH是矩形,
∴HE=OM=3,
∴BH=1,
∴BG=2BH=2.
故答案為:3,2.
科目:初中數學 來源: 題型:
【題目】圖①是由一個完全相同的小正方體組成的立體圖形,將圖①中的一個小正方體改變位置后如圖②,則三視圖發生改變的是( )
A. 主視圖,俯視較和左視圖都改變
B. 左視圖
C. 俯視圖
D. 主視圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
,
.
(1)如圖,點
、
在
,
上,且
,求證:
.
(2)點,
分別在直線
,
上,且
.
①如圖,當點
在
的延長線上時,求證:
;
②當點在點
,
之間,且
時,已知
,直接寫出線段
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】家訪是學校與家庭溝通的有效渠道,是形成教育合力的關鍵,是轉化后進生的催化劑.某市教育局組織全市中小學教師開展家訪活動活動過程中,教育局隨機抽取了部分教師調查其近兩周家訪次數,將采集到的數據按家訪次數分成五類,并分別繪制了下面的兩幅不完整的統計圖.
請根據以上信息,解答下列問題:
(1)請把條形統計圖補充完整;
(2)所抽取的教師中,近兩周家訪次數的眾數是 次,平均每位教師家訪 次;
(3)若該市有12000名教師,請估計近兩周家訪不少于3次的教師有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發生,許多道路在事故易發路段設置了區間測速如圖,學校附近有一條筆直的公路l,其間設有區間測速,所有車輛限速40千米/小時數學實踐活動小組設計了如下活動:在l上確定A,B兩點,并在AB路段進行區間測速.在l外取一點P,作PC⊥l,垂足為點C.測得PC=30米,∠APC=71°,∠BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學的數學知識說明該車是否超速.(參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖所示,在平面直角坐標系xOy中,拋物線y=ax2-2ax-3a(a<0)與x軸交于A,B兩點(點A在點B的左側),經過點A的直線l:y=kx+b與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.
(1)求A,B兩點的坐標及拋物線的對稱軸;
(2)求直線l的函數解析式(其中k,b用含a的式子表示);
(3)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;
(4)設P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,直接寫出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數交
軸于點
、
,交
軸于點
,在
軸上有一點
,連接
.
(1)求二次函數的表達式;
(2)若點為拋物線在
軸負半軸上方的一個動點,求
面積的最大值;
(3)拋物線對稱軸上是否存在點,使
為等腰三角形,若存在,請直接寫出所有
點的坐標,若不存在請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,
.
(1)如圖①,點在斜邊
上,以點
為圓心,
長為半徑的圓交
于點
,交
于點
,與邊
相切于點
.求證:
;
(2)在圖②中作,使它滿足以下條件:
①圓心在邊上;②經過點
;③與邊
相切.
(尺規作圖,只保留作圖痕跡,不要求寫出作法)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com