【題目】在△ABC中,AC=AB=5,一邊上高為3,求底邊BC的長(注意:請畫出圖形).
【答案】解:分三種情況:①當底邊BC邊上的高為3時,如圖1所示,
∵在△ACD中,AB=AC=5,高AD=3,
∴BD=CD= =4,
∴BC=2BD=8;
②當腰上的高BD=3時,如圖2所示:
則AD= =4,
∴CD=5﹣4=1,
∴BC= =
=
;
③當高在△ABC的外部時,如圖3所示:
∵在△BCD中,AB=AC=5,高BD=3,
∴AD= =4,
∴CD=4+5=9,
∴BC= =
=3
;
綜上所述:底邊BC的長是8或 或3
.
【解析】分三種情況:①當底邊BC邊上的高為3時;②當腰上的高BD=3時;③當高在△ABC的外部時;根據勾股定理先求得AD,根據線段的和差求得BD,根據勾股定理求得底邊BC的長.
【考點精析】解答此題的關鍵在于理解等腰三角形的性質的相關知識,掌握等腰三角形的兩個底角相等(簡稱:等邊對等角),以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)用尺規在邊BC上求作一點P,使PA=PB(不寫作法,保留作圖痕跡);
(2)連結AP,若AC=4,BC=8時,試求點P到AB邊的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:底與腰的比是的等腰三角形叫做黃金等腰三角形.
如圖,已知△ABC中,AB=BC,∠C=36°,BA1平分∠ABC交AC于A1.
(1)=AA1A C;
(2)探究:△ABC是否為黃金等腰三角形?請說明理由;(提示:此處不妨設AC=1)
(3)應用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此規律操作下去,用含a,n的代數式表示An﹣1An.(n為大于1的整數,直接回答,不必說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列各組中的四條線段成比例的是( )
A.1cm、2cm、20cm、30cm
B.1cm、2cm、3cm、4cm
C.5cm、10cm、10cm、20cm
D.4cm、2cm、1cm、3cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網格中,A,E為格點,B,F為小正方形邊的中點,C為AE,BF的延長線的交點.
(1)AE的長等于________;
(2)若點P在線段AC上,點Q在線段BC上,且滿足AP = PQ = QB,請在如圖所示的網格中,用無刻度的直尺,畫出線段PQ,并簡要說明點P,Q的位置是如何找到的(不要求證明)________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com